結果
問題 | No.1641 Tree Xor Query |
ユーザー |
|
提出日時 | 2024-08-20 14:08:58 |
言語 | Go (1.23.4) |
結果 |
AC
|
実行時間 | 307 ms / 5,000 ms |
コード長 | 18,807 bytes |
コンパイル時間 | 11,447 ms |
コンパイル使用メモリ | 237,812 KB |
実行使用メモリ | 45,020 KB |
最終ジャッジ日時 | 2024-08-20 14:09:13 |
合計ジャッジ時間 | 13,688 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 18 |
ソースコード
package mainimport ("bufio""fmt""os")func main() {// yosupoVertexAddPathSum()yuki1641()}func demo() {{// 0// / \// 1 2// / \// 3 4tree := NewTree32(5)tree.AddEdge(0, 1, 0)tree.AddEdge(0, 2, 0)tree.AddEdge(2, 3, 0)tree.AddEdge(2, 4, 0)tree.Build(0)S := NewTreeMonoid32(tree, false)S.Build(func(vidOrEid int32) E { return int(vidOrEid) })fmt.Println(S.QuerySubtree(0)) // 10fmt.Println(S.QuerySubtree(1)) // 1fmt.Println(S.QuerySubtree(2)) // 9fmt.Println(S.QuerySubtree(3)) // 3fmt.Println(S.QuerySubtree(4)) // 4fmt.Println(S.QueryPath(1, 3)) // 6fmt.Println(S.QuerySubtreeRooted(0, 3)) // 1S.Update(3, 10)fmt.Println(S.QuerySubtree(0)) // 20fmt.Println(S.QuerySubtreeRooted(4, 3)) // 1fmt.Println(S.QuerySubtreeRooted(2, 3)) // 7fmt.Println(S.MaxPath(1, 3, func(x E) bool { return x < 2 })) // 2}}// https://judge.yosupo.jp/problem/vertex_add_path_sumfunc yosupoVertexAddPathSum() {in := bufio.NewReader(os.Stdin)out := bufio.NewWriter(os.Stdout)defer out.Flush()var n, q int32fmt.Fscan(in, &n, &q)weights := make([]int, n)for i := 0; i < int(n); i++ {fmt.Fscan(in, &weights[i])}tree := NewTree32(n)for i := 1; i < int(n); i++ {var u, v int32fmt.Fscan(in, &u, &v)tree.AddEdge(u, v, 0)}tree.Build(0)S := NewTreeMonoid32(tree, false)S.Build(func(vidOrEid int32) E { return weights[vidOrEid] })for i := 0; i < int(q); i++ {var t intfmt.Fscan(in, &t)if t == 0 {var v, x int32fmt.Fscan(in, &v, &x)S.Update(v, int(x))} else {var u, v int32fmt.Fscan(in, &u, &v)fmt.Fprintln(out, S.QueryPath(u, v))}}}// https://yukicoder.me/problems/no/1641func yuki1641() {in := bufio.NewReader(os.Stdin)out := bufio.NewWriter(os.Stdout)defer out.Flush()var n, q int32fmt.Fscan(in, &n, &q)weights := make([]int, n)for i := 0; i < int(n); i++ {fmt.Fscan(in, &weights[i])}tree := NewTree32(n)for i := 1; i < int(n); i++ {var u, v int32fmt.Fscan(in, &u, &v)u, v = u-1, v-1tree.AddEdge(u, v, 0)}tree.Build(0)S := NewTreeMonoid32(tree, false)S.Build(func(vidOrEid int32) E { return weights[vidOrEid] })for i := 0; i < int(q); i++ {var t, x, y int32fmt.Fscan(in, &t, &x, &y)x--if t == 1 {S.Update(x, int(y))}if t == 2 {fmt.Fprintln(out, S.QuerySubtree(x))}}}type E = intconst commutative bool = true // E是否可交换,即 op(a,b) == op(b,a)func e() E { return 0 }// func op(a, b E) E { return a + b }func op(a, b E) E { return a ^ b }type TreeMonoid32 struct {edge int32n int32tree *Tree32seg, segR *SegmentTree}func NewTreeMonoid32(tree *Tree32, edge bool) *TreeMonoid32 {var edgeValue int32if edge {edgeValue = 1}return &TreeMonoid32{edge: edgeValue, n: tree.n, tree: tree}}func (tag *TreeMonoid32) Build(f func(vidOrEid int32) E) {idToNode := tag.tree.IdToNodevToE := tag.tree.vToEif tag.edge == 0 {fv := func(i int32) E { return f(idToNode[i]) }tag.seg = NewSegmentTree(tag.n, fv, e, op)if !commutative {tag.segR = NewSegmentTree(tag.n, fv, e, func(a, b E) E { return op(b, a) })}} else {fe := func(i int32) E {if i == 0 {return e()}return f(vToE[idToNode[i]])}tag.seg = NewSegmentTree(tag.n, fe, e, op)if !commutative {tag.segR = NewSegmentTree(tag.n, fe, e, func(a, b E) E { return op(b, a) })}}}func (tag *TreeMonoid32) Set(i int32, x E) {if tag.edge != 0 {i = tag.tree.EToV(i)}i = tag.tree.Lid[i]tag.seg.Set(i, x)if !commutative {tag.segR.Set(i, x)}}func (tag *TreeMonoid32) Update(i int32, x E) {if tag.edge != 0 {i = tag.tree.EToV(i)}i = tag.tree.Lid[i]tag.seg.Update(i, x)if !commutative {tag.segR.Update(i, x)}}func (tag *TreeMonoid32) QueryPath(from, to int32) E {pd := tag.tree.GetPathDecomposition(from, to, tag.edge)res := e()for i := 0; i < len(pd); i++ {res = op(res, tag.getProd(pd[i][0], pd[i][1]))}return res}func (tag *TreeMonoid32) QueryAll() E {return tag.QuerySubtree(tag.tree.IdToNode[0])}func (tag *TreeMonoid32) QuerySubtree(u int32) E {return tag.QuerySubtreeRooted(u, -1)}func (tag *TreeMonoid32) QuerySubtreeRooted(u, root int32) E {if root == u {return tag.QueryAll()}if root == -1 || tag.tree.InSubtree(u, root) {l, r := tag.tree.Lid[u], tag.tree.Rid[u]return tag.seg.Query(l+tag.edge, r)}if tag.edge == 1 {panic("not implemented")}u = tag.tree.Jump(u, root, 1)l, r := tag.tree.Lid[u], tag.tree.Rid[u]return op(tag.seg.Query(0, l), tag.seg.Query(r, tag.n))}func (tag *TreeMonoid32) MaxPath(from, to int32, check func(E) bool) int32 {if tag.edge != 0 {return tag.maxPathEdge(from, to, check)}pd := tag.tree.GetPathDecomposition(from, to, tag.edge)val := e()idToNode := tag.tree.IdToNodefor _, e := range pd {x := tag.getProd(e[0], e[1])if tmp := op(val, x); check(tmp) {val = tmpfrom = idToNode[e[1]]continue}checkTmp := func(x E) bool { return check(op(val, x)) }if e[0] <= e[1] {i := tag.seg.MaxRight(e[0], checkTmp)if i == e[0] {return from}return idToNode[i-1]} else {i := int32(0)if commutative {i = tag.seg.MinLeft(e[0]+1, checkTmp)} else {i = tag.segR.MinLeft(e[0]+1, checkTmp)}if i == e[0]+1 {return from}return idToNode[i]}}return to}func (tag *TreeMonoid32) maxPathEdge(from, to int32, check func(E) bool) int32 {lca := tag.tree.Lca(from, to)pd := tag.tree.GetPathDecomposition(from, lca, tag.edge)val := e()parent, idToNode := tag.tree.Parent, tag.tree.IdToNodefor _, e := range pd {x := tag.getProd(e[0], e[1])if tmp := op(val, x); check(tmp) {val = tmpfrom = parent[idToNode[e[1]]]continue}checkTmp := func(x E) bool { return check(op(val, x)) }i := int32(0)if commutative {i = tag.seg.MinLeft(e[0]+1, checkTmp)} else {i = tag.segR.MinLeft(e[0]+1, checkTmp)}if i == e[0]+1 {return from}return parent[idToNode[i]]}pd = tag.tree.GetPathDecomposition(lca, to, tag.edge)for _, e := range pd {x := tag.getProd(e[0], e[1])if tmp := op(val, x); check(tmp) {val = tmpfrom = idToNode[e[1]]continue}checkTmp := func(x E) bool { return check(op(val, x)) }i := tag.seg.MaxRight(e[0], checkTmp)if i == e[0] {return from}return idToNode[i-1]}return to}func (tag *TreeMonoid32) getProd(a, b int32) E {if commutative {if a <= b {return tag.seg.Query(a, b+1)}return tag.seg.Query(b, a+1)} else {if a <= b {return tag.seg.Query(a, b+1)}return tag.segR.Query(b, a+1)}}type SegmentTree struct {n, size int32seg []Ee func() Eop func(a, b E) E}func NewSegmentTree(n int32, f func(int32) E, e func() E, op func(a, b E) E) *SegmentTree {res := &SegmentTree{e: e, op: op}size := int32(1)for size < n {size <<= 1}seg := make([]E, size<<1)for i := range seg {seg[i] = e()}for i := int32(0); i < n; i++ {seg[i+size] = f(i)}for i := size - 1; i > 0; i-- {seg[i] = op(seg[i<<1], seg[i<<1|1])}res.n = nres.size = sizeres.seg = segreturn res}func (st *SegmentTree) Get(index int32) E {if index < 0 || index >= st.n {return st.e()}return st.seg[index+st.size]}func (st *SegmentTree) Set(index int32, value E) {if index < 0 || index >= st.n {return}index += st.sizest.seg[index] = valuefor index >>= 1; index > 0; index >>= 1 {st.seg[index] = st.op(st.seg[index<<1], st.seg[index<<1|1])}}func (st *SegmentTree) Update(index int32, value E) {if index < 0 || index >= st.n {return}index += st.sizest.seg[index] = st.op(st.seg[index], value)for index >>= 1; index > 0; index >>= 1 {st.seg[index] = st.op(st.seg[index<<1], st.seg[index<<1|1])}}// [start, end)func (st *SegmentTree) Query(start, end int32) E {if start < 0 {start = 0}if end > st.n {end = st.n}if start >= end {return st.e()}leftRes, rightRes := st.e(), st.e()start += st.sizeend += st.sizefor start < end {if start&1 == 1 {leftRes = st.op(leftRes, st.seg[start])start++}if end&1 == 1 {end--rightRes = st.op(st.seg[end], rightRes)}start >>= 1end >>= 1}return st.op(leftRes, rightRes)}func (st *SegmentTree) QueryAll() E { return st.seg[1] }func (st *SegmentTree) GetAll() []E {res := make([]E, st.n)copy(res, st.seg[st.size:st.size+st.n])return res}// 二分查询最大的 right 使得切片 [left:right] 内的值满足 predicatefunc (st *SegmentTree) MaxRight(left int32, predicate func(E) bool) int32 {if left == st.n {return st.n}left += st.sizeres := st.e()for {for left&1 == 0 {left >>= 1}if !predicate(st.op(res, st.seg[left])) {for left < st.size {left <<= 1if tmp := st.op(res, st.seg[left]); predicate(tmp) {res = tmpleft++}}return left - st.size}res = st.op(res, st.seg[left])left++if (left & -left) == left {break}}return st.n}// 二分查询最小的 left 使得切片 [left:right] 内的值满足 predicatefunc (st *SegmentTree) MinLeft(right int32, predicate func(E) bool) int32 {if right == 0 {return 0}right += st.sizeres := st.e()for {right--for right > 1 && right&1 == 1 {right >>= 1}if !predicate(st.op(st.seg[right], res)) {for right < st.size {right = right<<1 | 1if tmp := st.op(st.seg[right], res); predicate(tmp) {res = tmpright--}}return right + 1 - st.size}res = st.op(st.seg[right], res)if right&-right == right {break}}return 0}type neighbor = struct {to int32eid int32cost int}type Tree32 struct {Lid, Rid []int32IdToNode []int32Depth []int32DepthWeighted []intParent []int32Head []int32 // 重链头Tree [][]neighborEdges [][2]int32vToE []int32 // 节点v的父边的idn int32}func NewTree32(n int32) *Tree32 {res := &Tree32{Tree: make([][]neighbor, n), Edges: make([][2]int32, 0, n-1), n: n}return res}func (t *Tree32) AddEdge(u, v int32, w int) {eid := int32(len(t.Edges))t.Tree[u] = append(t.Tree[u], neighbor{to: v, eid: eid, cost: w})t.Tree[v] = append(t.Tree[v], neighbor{to: u, eid: eid, cost: w})t.Edges = append(t.Edges, [2]int32{u, v})}func (t *Tree32) AddDirectedEdge(from, to int32, cost int) {eid := int32(len(t.Edges))t.Tree[from] = append(t.Tree[from], neighbor{to: to, eid: eid, cost: cost})t.Edges = append(t.Edges, [2]int32{from, to})}func (t *Tree32) Build(root int32) {if root != -1 && int32(len(t.Edges)) != t.n-1 {panic("edges count != n-1")}n := t.nt.Lid = make([]int32, n)t.Rid = make([]int32, n)t.IdToNode = make([]int32, n)t.Depth = make([]int32, n)t.DepthWeighted = make([]int, n)t.Parent = make([]int32, n)t.Head = make([]int32, n)t.vToE = make([]int32, n)for i := int32(0); i < n; i++ {t.Depth[i] = -1t.Head[i] = roott.vToE[i] = -1}if root != -1 {t._dfsSize(root, -1)time := int32(0)t._dfsHld(root, &time)} else {time := int32(0)for i := int32(0); i < n; i++ {if t.Depth[i] == -1 {t._dfsSize(i, -1)t._dfsHld(i, &time)}}}}// 从v开始沿着重链向下收集节点.func (t *Tree32) HeavyPathAt(v int32) []int32 {path := []int32{v}for {a := path[len(path)-1]for _, e := range t.Tree[a] {if e.to != t.Parent[a] && t.Head[e.to] == v {path = append(path, e.to)break}}if path[len(path)-1] == a {break}}return path}// 返回重儿子,如果没有返回 -1.func (t *Tree32) HeavyChild(v int32) int32 {k := t.Lid[v] + 1if k == t.n {return -1}w := t.IdToNode[k]if t.Parent[w] == v {return w}return -1}// 从v开始向上走k步.func (t *Tree32) KthAncestor(v, k int32) int32 {if k > t.Depth[v] {return -1}for {u := t.Head[v]if t.Lid[v]-k >= t.Lid[u] {return t.IdToNode[t.Lid[v]-k]}k -= t.Lid[v] - t.Lid[u] + 1v = t.Parent[u]}}func (t *Tree32) Lca(u, v int32) int32 {for {if t.Lid[u] > t.Lid[v] {u, v = v, u}if t.Head[u] == t.Head[v] {return u}v = t.Parent[t.Head[v]]}}func (t *Tree32) LcaRooted(u, v, root int32) int32 {return t.Lca(u, v) ^ t.Lca(u, root) ^ t.Lca(v, root)}func (t *Tree32) Dist(a, b int32) int32 {c := t.Lca(a, b)return t.Depth[a] + t.Depth[b] - 2*t.Depth[c]}func (t *Tree32) DistWeighted(a, b int32) int {c := t.Lca(a, b)return t.DepthWeighted[a] + t.DepthWeighted[b] - 2*t.DepthWeighted[c]}// c 是否在 p 的子树中.c和p不能相等.func (t *Tree32) InSubtree(c, p int32) bool {return t.Lid[p] <= t.Lid[c] && t.Lid[c] < t.Rid[p]}// 从 a 开始走 k 步到 b.func (t *Tree32) Jump(a, b, k int32) int32 {if k == 1 {if a == b {return -1}if t.InSubtree(b, a) {return t.KthAncestor(b, t.Depth[b]-t.Depth[a]-1)}return t.Parent[a]}c := t.Lca(a, b)dac := t.Depth[a] - t.Depth[c]dbc := t.Depth[b] - t.Depth[c]if k > dac+dbc {return -1}if k <= dac {return t.KthAncestor(a, k)}return t.KthAncestor(b, dac+dbc-k)}func (t *Tree32) SubtreeSize(v int32) int32 {return t.Rid[v] - t.Lid[v]}func (t *Tree32) SubtreeSizeRooted(v, root int32) int32 {if v == root {return t.n}x := t.Jump(v, root, 1)if t.InSubtree(v, x) {return t.Rid[v] - t.Lid[v]}return t.n - t.Rid[x] + t.Lid[x]}func (t *Tree32) CollectChild(v int32) []int32 {var res []int32for _, e := range t.Tree[v] {if e.to != t.Parent[v] {res = append(res, e.to)}}return res}// 收集与 v 相邻的轻边.func (t *Tree32) CollectLight(v int32) []int32 {var res []int32skip := truefor _, e := range t.Tree[v] {if e.to != t.Parent[v] {if !skip {res = append(res, e.to)}skip = false}}return res}func (tree *Tree32) RestorePath(from, to int32) []int32 {res := []int32{}composition := tree.GetPathDecomposition(from, to, 0)for _, e := range composition {a, b := e[0], e[1]if a <= b {for i := a; i <= b; i++ {res = append(res, tree.IdToNode[i])}} else {for i := a; i >= b; i-- {res = append(res, tree.IdToNode[i])}}}return res}// 返回沿着`路径顺序`的 [起点,终点] 的 欧拉序 `左闭右闭` 数组.//// !eg:[[2 0] [4 4]] 沿着路径顺序但不一定沿着欧拉序.func (tree *Tree32) GetPathDecomposition(u, v int32, edge int32) [][2]int32 {up, down := [][2]int32{}, [][2]int32{}lid, head, parent := tree.Lid, tree.Head, tree.Parentfor {if head[u] == head[v] {break}if lid[u] < lid[v] {down = append(down, [2]int32{lid[head[v]], lid[v]})v = parent[head[v]]} else {up = append(up, [2]int32{lid[u], lid[head[u]]})u = parent[head[u]]}}if lid[u] < lid[v] {down = append(down, [2]int32{lid[u] + edge, lid[v]})} else if lid[v]+edge <= lid[u] {up = append(up, [2]int32{lid[u], lid[v] + edge})}for i := 0; i < len(down)/2; i++ {down[i], down[len(down)-1-i] = down[len(down)-1-i], down[i]}return append(up, down...)}// 遍历路径上的 `[起点,终点)` 欧拉序 `左闭右开` 区间.func (tree *Tree32) EnumeratePathDecomposition(u, v int32, edge int32, f func(start, end int32)) {head, lid, parent := tree.Head, tree.Lid, tree.Parentfor {if head[u] == head[v] {break}if lid[u] < lid[v] {a, b := lid[head[v]], lid[v]if a > b {a, b = b, a}f(a, b+1)v = parent[head[v]]} else {a, b := lid[u], lid[head[u]]if a > b {a, b = b, a}f(a, b+1)u = parent[head[u]]}}if lid[u] < lid[v] {a, b := lid[u]+edge, lid[v]if a > b {a, b = b, a}f(a, b+1)} else if lid[v]+edge <= lid[u] {a, b := lid[u], lid[v]+edgeif a > b {a, b = b, a}f(a, b+1)}}// 返回 root 的欧拉序区间, 左闭右开, 0-indexed.func (tree *Tree32) Id(root int32) (int32, int32) {return tree.Lid[root], tree.Rid[root]}// 返回返回边 u-v 对应的 欧拉序起点编号, 1 <= eid <= n-1., 0-indexed.func (tree *Tree32) Eid(u, v int32) int32 {if tree.Lid[u] > tree.Lid[v] {return tree.Lid[u]}return tree.Lid[v]}// 点v对应的父边的边id.如果v是根节点则返回-1.func (tre *Tree32) VToE(v int32) int32 {return tre.vToE[v]}// 第i条边对应的深度更深的那个节点.func (tree *Tree32) EToV(i int32) int32 {u, v := tree.Edges[i][0], tree.Edges[i][1]if tree.Parent[u] == v {return u}return v}func (tree *Tree32) ELid(u int32) int32 {return 2*tree.Lid[u] - tree.Depth[u]}func (tree *Tree32) ERid(u int32) int32 {return 2*tree.Rid[u] - tree.Depth[u] - 1}func (t *Tree32) _dfsSize(cur, pre int32) {size := t.Ridt.Parent[cur] = preif pre != -1 {t.Depth[cur] = t.Depth[pre] + 1} else {t.Depth[cur] = 0}size[cur] = 1nexts := t.Tree[cur]for i := int32(len(nexts)) - 2; i >= 0; i-- {e := nexts[i+1]if t.Depth[e.to] == -1 {nexts[i], nexts[i+1] = nexts[i+1], nexts[i]}}hldSize := int32(0)for i, e := range nexts {to := e.toif t.Depth[to] == -1 {t.DepthWeighted[to] = t.DepthWeighted[cur] + e.costt.vToE[to] = e.eidt._dfsSize(to, cur)size[cur] += size[to]if size[to] > hldSize {hldSize = size[to]if i != 0 {nexts[0], nexts[i] = nexts[i], nexts[0]}}}}}func (t *Tree32) _dfsHld(cur int32, times *int32) {t.Lid[cur] = *times*times++t.Rid[cur] += t.Lid[cur]t.IdToNode[t.Lid[cur]] = curheavy := truefor _, e := range t.Tree[cur] {to := e.toif t.Depth[to] > t.Depth[cur] {if heavy {t.Head[to] = t.Head[cur]} else {t.Head[to] = to}heavy = falset._dfsHld(to, times)}}}// 路径 [a,b] 与 [c,d] 的交集.// 如果为空则返回 {-1,-1},如果只有一个交点则返回 {x,x},如果有两个交点则返回 {x,y}.func (t *Tree32) PathIntersection(a, b, c, d int32) (int32, int32) {ab := t.Lca(a, b)ac := t.Lca(a, c)ad := t.Lca(a, d)bc := t.Lca(b, c)bd := t.Lca(b, d)cd := t.Lca(c, d)x := ab ^ ac ^ bc // meet(a,b,c)y := ab ^ ad ^ bd // meet(a,b,d)if x != y {return x, y}z := ac ^ ad ^ cdif x != z {x = -1}return x, x}func max(a, b int) int {if a > b {return a}return b}func min(a, b int) int {if a < b {return a}return b}func min32(a, b int32) int32 {if a < b {return a}return b}func max32(a, b int32) int32 {if a > b {return a}return b}func abs(a int) int {if a < 0 {return -a}return a}