結果
問題 | No.2801 Unique Maximum |
ユーザー | noya2 |
提出日時 | 2024-08-23 01:50:54 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,410 ms / 4,000 ms |
コード長 | 39,556 bytes |
コンパイル時間 | 4,469 ms |
コンパイル使用メモリ | 275,984 KB |
実行使用メモリ | 18,324 KB |
最終ジャッジ日時 | 2024-08-23 01:51:17 |
合計ジャッジ時間 | 21,198 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 7 ms
6,816 KB |
testcase_01 | AC | 8 ms
6,940 KB |
testcase_02 | AC | 327 ms
9,148 KB |
testcase_03 | AC | 6 ms
6,940 KB |
testcase_04 | AC | 8 ms
6,944 KB |
testcase_05 | AC | 9 ms
6,940 KB |
testcase_06 | AC | 8 ms
6,944 KB |
testcase_07 | AC | 1,385 ms
18,324 KB |
testcase_08 | AC | 1,395 ms
18,316 KB |
testcase_09 | AC | 6 ms
6,944 KB |
testcase_10 | AC | 1,369 ms
18,160 KB |
testcase_11 | AC | 1,410 ms
18,324 KB |
testcase_12 | AC | 1,409 ms
18,196 KB |
testcase_13 | AC | 1,352 ms
18,192 KB |
testcase_14 | AC | 1,382 ms
18,192 KB |
testcase_15 | AC | 8 ms
6,940 KB |
testcase_16 | AC | 7 ms
6,940 KB |
testcase_17 | AC | 8 ms
6,944 KB |
testcase_18 | AC | 526 ms
10,988 KB |
testcase_19 | AC | 568 ms
11,184 KB |
testcase_20 | AC | 605 ms
11,592 KB |
testcase_21 | AC | 1,319 ms
17,328 KB |
testcase_22 | AC | 1,137 ms
15,924 KB |
testcase_23 | AC | 1,342 ms
17,776 KB |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include<bits/stdc++.h> #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p){ os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p){ is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template<typename T> void out(const vector<vector<T>> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector<int> dx = {0,1,0,-1,1,1,-1,-1}; const vector<int> dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << std::min(n, m); } template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template<typename T> T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0); } template<typename T> T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0); } template<typename T> void uniq(std::vector<T> &v){ std::sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using pil = pair<int,ll>; using pli = pair<ll,int>; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c.cpp" #line 2 "/Users/noya2/Desktop/Noya2_library/fps998244353/fps998244353.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" namespace noya2 { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m); constexpr long long primitive_root_constexpr(long long m){ if (m == (1LL << 47) - (1LL << 24) + 1) return 3; return primitive_root_constexpr(static_cast<int>(m)); } } // namespace noya2 #line 6 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" namespace noya2{ struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; unsigned long long x = (unsigned long long)((__uint128_t(z) * im) >> 64); unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; template <int m> struct static_modint { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template<std::signed_integral T> constexpr static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> constexpr static_modint(T v){ _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = is_prime_flag<m>; }; template <int id> struct dynamic_modint { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template<std::signed_integral T> dynamic_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> dynamic_modint(T v){ _v = (unsigned int)(v % umod()); } uint val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = noya2::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> noya2::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; template<typename T> concept Modint = requires (T &a){ T::mod(); a.inv(); a.val(); a.pow(declval<int>()); }; } // namespace noya2 #line 4 "/Users/noya2/Desktop/Noya2_library/fps998244353/fps998244353.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/fps998244353/ntt998244353.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/fps998244353/modint998244353.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/fps998244353/modint998244353.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/fps998244353/modint998244353.hpp" namespace noya2 { template <> struct static_modint<998244353> { using mint = static_modint; public: static constexpr int mod() { return 998244353; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template<std::signed_integral T> constexpr static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> constexpr static_modint(T v){ _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { assert(_v); return pow(umod() - 2); } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } unsigned int _v; static constexpr int primitive_root_constexpr_v = 3; private: static constexpr unsigned int umod() { return 998244353u; } static constexpr bool prime = true; }; } // namespace noya2 #line 4 "/Users/noya2/Desktop/Noya2_library/fps998244353/ntt998244353.hpp" #line 7 "/Users/noya2/Desktop/Noya2_library/fps998244353/ntt998244353.hpp" namespace noya2 { namespace internal { constexpr int FFT_MAX = 23; constexpr unsigned FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U}; constexpr unsigned INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U}; constexpr unsigned FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U}; constexpr unsigned INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U}; } // namespace noya2::internal struct ntt998244353 { using mint = modint998244353; static constexpr unsigned MO = modint998244353::mod(); static constexpr unsigned MO2 = MO * 2; static void ntt(mint *as, int n){ int m = n; if (m >>= 1){ for (int i = 0; i < m; i++){ const unsigned x = as[i + m]._v; as[i + m]._v = as[i]._v + MO - x; as[i]._v += x; } } if (m >>= 1){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + m; i++){ const unsigned x = (prod * as[i + m])._v; as[i + m]._v = as[i]._v + MO - x; as[i]._v += x; } prod *= mint::raw(internal::FFT_RATIOS[__builtin_ctz(++h)]); } } for (; m; ){ if (m >>= 1){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + m; i++){ const unsigned x = (prod * as[i + m])._v; as[i + m]._v = as[i]._v + MO - x; as[i]._v += x; } prod *= mint::raw(internal::FFT_RATIOS[__builtin_ctz(++h)]); } } if (m >>= 1){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + m; i++){ const unsigned x = (prod * as[i + m])._v; as[i]._v = (as[i]._v >= MO2 ? as[i]._v - MO2 : as[i]._v); as[i + m]._v = as[i]._v + MO - x; as[i]._v += x; } prod *= mint::raw(internal::FFT_RATIOS[__builtin_ctz(++h)]); } } } for (int i = 0; i < n; i++){ as[i]._v = (as[i]._v >= MO2 ? as[i]._v - MO2 : as[i]._v); as[i]._v = (as[i]._v >= MO ? as[i]._v - MO : as[i]._v); } } static void intt(mint *as, int n){ int m = 1; if (m < (n >> 1)){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + m; i++){ const unsigned long long y = as[i]._v + MO - as[i + m]._v; as[i]._v += as[i + m]._v; as[i + m]._v = prod._v * y % MO; } prod *= mint::raw(internal::INV_FFT_RATIOS[__builtin_ctz(++h)]); } m <<= 1; } for (; m < (n >> 1); m <<= 1){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + (m >> 1); i++){ const unsigned long long y = as[i]._v + MO2 - as[i + m]._v; as[i]._v += as[i + m]._v; as[i]._v = (as[i]._v >= MO2 ? as[i]._v - MO2 : as[i]._v); as[i + m]._v = prod._v * y % MO; } for (int i = i0 + (m >> 1); i < i0 + m; i++){ const unsigned long long y = as[i]._v + MO - as[i + m]._v; as[i]._v += as[i + m]._v; as[i + m]._v = prod._v * y % MO; } prod *= mint::raw(internal::INV_FFT_RATIOS[__builtin_ctz(++h)]); } } if (m < n){ for (int i = 0; i < m; i++){ const unsigned y = as[i]._v + MO2 - as[i + m]._v; as[i]._v += as[i + m]._v; as[i + m]._v = y; } } for (int i = 0; i < n; i++){ as[i]._v = (as[i]._v >= MO2 ? as[i]._v - MO2 : as[i]._v); as[i]._v = (as[i]._v >= MO ? as[i]._v - MO : as[i]._v); } } static void ntt(std::vector<mint> &as){ ntt(as.data(), as.size()); } static void intt(std::vector<mint> &as){ intt(as.data(), as.size()); } static void intt_div(std::vector<mint> &as){ intt(as); int n = as.size(); const mint inv_n = mint::raw(n).inv(); for (int i = 0; i < n; i++){ as[i] *= inv_n; } } static std::vector<mint> multiply(std::vector<mint> as, std::vector<mint> bs){ if (as.empty() || bs.empty()) return {}; const int len = as.size() + bs.size() - 1u; if (std::min(as.size(), bs.size()) <= 40u){ std::vector<mint> s(len); for (int i = 0; i < (int)(as.size()); i++){ for (int j = 0; j < (int)(bs.size()); j++){ s[i + j] += as[i] * bs[j]; } } return s; } int n = 1; for (; n < len; n <<= 1) {} if (as.size() == bs.size() && as == bs){ as.resize(n); ntt(as); for (int i = 0; i < n; i++){ as[i] *= as[i]; } } else { as.resize(n); ntt(as); bs.resize(n); ntt(bs); for (int i = 0; i < n; i++){ as[i] *= bs[i]; } } intt_div(as); as.resize(len); return as; } static void ntt_doubling(std::vector<mint> &as){ auto bs = as; intt(bs); mint e = mint::raw(internal::FFT_ROOTS[std::countr_zero(as.size()) + 1]); mint iv = mint::raw(as.size()).inv(); for (auto &x : bs){ x *= iv; iv *= e; } ntt(bs); as.insert(as.end(), bs.begin(), bs.end()); } static void ntt_pick_parity(std::vector<mint> &f, int odd){ int n = f.size() / 2; mint i2 = mint::raw((mint::mod() + 1) >> 1); if (odd == 0){ for (int i = 0; i < n; i++){ f[i] = (f[i * 2] + f[i * 2 + 1]) * i2; } f.resize(n); return ; } mint ie = mint::raw(internal::INV_FFT_ROOTS[std::countr_zero(f.size())]); std::vector<mint> es = {i2}; while ((int)(es.size()) != n){ std::vector<mint> nes(es.size() * 2u); for (int i = 0; i < (int)(es.size()); i++){ nes[i * 2 + 0] = es[i]; nes[i * 2 + 1] = es[i] * ie; } ie *= ie; std::swap(es, nes); } for (int i = 0; i < n; i++){ f[i] = (f[i * 2] - f[i * 2 + 1]) * es[i]; } f.resize(n); } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/math/binomial.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/binomial.hpp" namespace noya2 { template<typename mint> struct binomial { binomial(int len = 300000){ extend(len); } static mint fact(int n){ if (n < 0) return 0; while (n >= (int)_fact.size()) extend(); return _fact[n]; } static mint ifact(int n){ if (n < 0) return 0; while (n >= (int)_fact.size()) extend(); return _ifact[n]; } static mint inv(int n){ return ifact(n) * fact(n-1); } static mint C(int n, int r){ if (!(0 <= r && r <= n)) return 0; return fact(n) * ifact(r) * ifact(n-r); } static mint P(int n, int r){ if (!(0 <= r && r <= n)) return 0; return fact(n) * ifact(n-r); } inline mint operator()(int n, int r) { return C(n, r); } template<class... Cnts> static mint M(const Cnts&... cnts){ return multinomial(0,1,cnts...); } static void initialize(int len = 2){ _fact.clear(); _ifact.clear(); extend(len); } private: static mint multinomial(const int& sum, const mint& div_prod){ if (sum < 0) return 0; return fact(sum) * div_prod; } template<class... Tail> static mint multinomial(const int& sum, const mint& div_prod, const int& n1, const Tail&... tail){ if (n1 < 0) return 0; return multinomial(sum+n1,div_prod*ifact(n1),tail...); } static inline std::vector<mint> _fact, _ifact; static void extend(int len = -1){ if (_fact.empty()){ _fact = _ifact = {1,1}; } int siz = _fact.size(); if (len == -1) len = siz * 2; len = (int)min<long long>(len, mint::mod() - 1); if (len < siz) return ; _fact.resize(len+1), _ifact.resize(len+1); for (int i = siz; i <= len; i++) _fact[i] = _fact[i-1] * i; _ifact[len] = _fact[len].inv(); for (int i = len; i > siz; i--) _ifact[i-1] = _ifact[i] * i; } }; } // namespace noya2 #line 7 "/Users/noya2/Desktop/Noya2_library/fps998244353/fps998244353.hpp" namespace noya2 { // Formal Power Series for modint998244353 struct fps998244353 : std::vector<modint998244353> { using mint = modint998244353; using std::vector<mint>::vector; using std::vector<mint>::operator=; using fps = fps998244353; static inline binomial<mint> bnm; fps998244353 (const std::vector<mint> &init){ (*this) = init; } void shrink(){ while(!(this->empty()) && this->back().val() == 0){ this->pop_back(); } } fps &operator*= (const mint &r){ for (auto &x : *this) x *= r; return *this; } fps &operator/= (const mint &r){ (*this) *= r.inv(); return *this; } fps &operator<<= (const int &d){ this->insert(this->begin(), d, mint(0)); return *this; } fps &operator>>= (const int &d){ if ((int)(this->size()) <= d) this->clear(); else this->erase(this->begin(),this->begin() + d); return *this; } fps &operator+= (const fps &r){ if (this->size() < r.size()) this->resize(r.size()); for (int i = 0; auto x : r){ (*this)[i++] += x; } return *this; } fps &operator-= (const fps &r){ if (this->size() < r.size()) this->resize(r.size()); for (int i = 0; auto x : r){ (*this)[i++] -= x; } return *this; } fps &operator*= (const fps &r){ if (this->empty() || r.empty()){ this->clear(); return *this; } (*this) = ntt998244353::multiply(*this, r); return *this; } fps operator* (const mint &r) const { return fps(*this) *= r; } fps operator/ (const mint &r) const { return fps(*this) /= r; } fps operator<< (const int &d) const { return fps(*this) <<= d; } fps operator>> (const int &d) const { return fps(*this) >>= d; } fps operator+ (const fps &r) const { return fps(*this) += r; } fps operator- (const fps &r) const { return fps(*this) -= r; } fps operator* (const fps &r) const { return fps(*this) *= r; } fps operator+ () const { return *this; } fps operator- () const { fps ret(*this); for (auto &x : ret) x = -x; return ret; } mint eval(const mint &x) const { mint res(0), w(1); for (auto a : *this){ res += a * w; w *= x; } return res; } [[nodiscard("Do not change but return changed object.")]] fps pre(std::size_t sz) const { fps ret(this->begin(), this->begin() + std::min(this->size(), sz)); if (ret.size() < sz) ret.resize(sz); return ret; } [[nodiscard("Do not change but return changed object.")]] fps rev() const { fps ret(*this); std::reverse(ret.begin(), ret.end()); return ret; } [[nodiscard("Do not change but return changed object.")]] fps diff() const { if (this->empty()){ return fps(); } fps ret(this->begin() + 1, this->end()); for (int i = 1; auto &x : ret){ x *= i++; } return ret; } [[nodiscard("Do not change but return changed object.")]] fps integral() const { if (this->empty()){ return fps(); } fps ret(1, mint(0)); ret.insert(ret.end(), this->begin(), this->end()); for (int i = 0; auto &x : ret){ x *= bnm.inv(i++); // inv(0) = 0 } return ret; } [[nodiscard("Do not change but return changed object.")]] fps inv(int d = -1) const { const int n = this->size(); if (d == -1) d = n; fps res = {(*this)[0].inv()}; for (int siz = 1; siz < d; siz <<= 1){ fps f(this->begin(),this->begin()+min(n,siz*2)), g(res); f.resize(siz*2), g.resize(siz*2); f.ntt(), g.ntt(); for (int i = 0; i < siz*2; i++) f[i] *= g[i]; f.intt(); f.erase(f.begin(),f.begin()+siz); f.resize(siz*2); f.ntt(); for (int i = 0; i < siz*2; i++) f[i] *= g[i]; f.intt(); mint siz2_inv = mint(siz*2).inv(); siz2_inv *= -siz2_inv; for (int i = 0; i < siz; i++) f[i] *= siz2_inv; res.insert(res.end(),f.begin(),f.begin()+siz); } res.resize(d); return res; } [[nodiscard("Do not change but return changed object.")]] fps log(int d = -1) const { assert(this->empty() == false && (*this)[0].val() == 1u); if (d == -1) d = this->size(); return (this->diff() * this->inv(d)).pre(d - 1).integral(); } [[nodiscard("Do not change but return changed object.")]] fps exp(int d = -1) const { const int n = this->size(); if (d == -1) d = n; assert(n == 0 || (*this)[0].val() == 0u); if (n <= 1){ fps ret(1,1); ret.resize(d); return ret; } // n >= 2 fps f = {mint(1), (*this)[1]}, ret = f; for (int sz = 2; sz < d; sz <<= 1){ f.insert(f.end(), this->begin()+std::min(n,sz), this->begin()+std::min(n,sz*2)); f.resize(sz*2); ret *= f - ret.log(sz*2); ret.resize(sz*2); } ret.resize(d); return ret; } [[nodiscard("Do not change but return changed object.")]] fps pow(long long k, int d = -1) const { const int n = this->size(); if (d == -1) d = n; if (k == 0){ fps ret(d, mint(0)); if (d >= 1) ret[0] = 1; return ret; } // Find left-most nonzero term. for (int i = 0; i < n; i++){ if ((*this)[i].val() != 0u){ mint iv = (*this)[i].inv(); fps ret = ((((*this) * iv) >> i).log(d) * mint(k)).exp(d); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(d); return ret; } if ((i + 1) * k >= d) break; } return fps(d, mint(0)); } void ntt(){ ntt998244353::ntt(*this); } // NOT /= len void intt(){ ntt998244353::intt(*this); } // already /= len void intt_div(){ ntt998244353::intt_div(*this); } // input : ntt( f[0, 2^n) ) // output : ntt( f[0, 2^n) ++ zero_padding[0, 2^n) ) void ntt_doubling(){ ntt998244353::ntt_doubling(*this); } // input : ntt( f[0, 2^n) ) // output : ntt( g[0, 2^{n-1}) ), g[i] = f[i * 2 + odd] void ntt_pick_parity(int odd){ ntt998244353::ntt_pick_parity(*this, odd); } fps quotient(fps r) const { r.shrink(); const int n = this->size(), m = r.size(); if (n < m){ return fps(); } fps quo(*this); const int sz = n - m + 1; std::reverse(quo.begin(), quo.end()); std::reverse(r.begin(), r.end()); quo.resize(sz); quo *= r.inv(sz); quo.resize(sz); std::reverse(quo.begin(), quo.end()); return quo; } fps remainder(fps r) const { r.shrink(); const int n = this->size(), m = r.size(); if (n < m){ return fps(*this); } fps rem(*this); rem -= quotient(r) * r; rem.resize(m-1); rem.shrink(); return rem; } std::pair<fps,fps> remquo(fps r) const { r.shrink(); fps quo = quotient(r); fps rem(*this); rem -= quo * r; rem.shrink(); return {rem, quo}; } }; } // namespace noya2 #line 4 "c.cpp" using mint = modint998244353; using fps = fps998244353; void solve(){ binomial<mint> bnm; int n, mm; in(n,mm); n++; // find [x^n](x + x^2)^<m> // f = (x + x^2)^<m> // a = f + f^2 // b = f(x + x^2) fps f(n+2), a(n+2), b(n+2); // dfs(l, r) : // find [x^[l, r-2]] of f, a, b // return sum[i in [l, r-2]] f[i] * (x + x^2)^{i - l} // // 1 : call dfs(l, m) // 2 : propagate [l, m-2] -> [m, r) // 3 : find [x^[m-1]] // 4 : propagate [m-1] -> [m, r) // 5 : call dfs(m, r) // 6 : return sum auto dfs = [&](auto sfs, int l, int r) -> fps { if (r - l <= 1) return {}; int m = (l + r) / 2; // 1 auto lhs = sfs(sfs,l,m); // 2 {// a // [0, r-l) * [l, m-1) --> [m, r) // f[0, min(l,r-l)) fps lf(f.begin() + 0, f.begin() + min(l,r-l)); // f[l, m-1) fps rf(f.begin() + l, f.begin() + m-1); fps lfrf = lf * rf * 2; for (int i = 0; i < (int)(lfrf.size()); i++){ int j = l + i; if (m <= j && j < r){ a[j] += lfrf[i]; } } fps rfrf = rf * rf; for (int i = 0; i < (int)(rfrf.size()); i++){ int j = l + l + i; if (m <= j && j < r){ a[j] += rfrf[i]; } } } {// b int sz = lhs.size(); // (x + x^2)^l * lhs // x^l * (1 + x)^l * lhs // [l] * [m-sz+1-l, r-1-l] * [0, sz-1] --> [m, r-1] int il = max(m-sz+1-l, 0); fps bin(r-1-l - il + 1); for (int i = 0; i < (int)(bin.size()); i++){ int j = il + i; bin[i] = bnm(l, j); } bin *= lhs; for (int i = 0; i < (int)(bin.size()); i++){ int j = l + il + i; if (m <= j && j < r){ b[j] += bin[i]; } } } // 3 if (m == 1){ f[m-1] = 0; } else if (m == 2){ f[m-1] = 1; } else if (m == 3){ f[m-1] = mm; } else { f[m-1] = (a[m] - b[m]) * bnm.inv(m-3); } // 4 {// a a[m-1] += f[m-1]; // no need for (int i = m; i < r; i++){ if (i-(m-1) < m-1){ a[i] += f[m-1] * f[i-(m-1)] * 2; } if (i-(m-1) == m-1){ a[i] += f[m-1] * f[m-1]; } } } {// b // f[m-1] * (x + x^2)^{m-1} // i = m-1 : no need (i = m : also ok) for (int i = m-1; i < r; i++){ b[i] += f[m-1] * bnm(m-1, i-(m-1)); } } // 5 auto rhs = sfs(sfs,m,r); // 6 {// lhs += f[m-1] * (x + x^2)^{m-1-l} fps bin(m-1-l+1); for (int i = 0; i < m-1-l+1; i++){ bin[i] = bnm(m-1-l,i); } bin *= f[m-1]; bin <<= m-1-l; lhs += bin; } {// lhs += rhs * (x + x^2)^{m-l} fps bin(m-l+1); for (int i = 0; i < m-l+1; i++){ bin[i] = bnm(m-l,i); } bin <<= m-l; lhs += rhs * bin; } return lhs; }; dfs(dfs,0,n+2); out(f[n]); } int main(){ int t = 1; //in(t); while (t--) { solve(); } }