結果
| 問題 |
No.2861 Slime Party
|
| コンテスト | |
| ユーザー |
siganai
|
| 提出日時 | 2024-08-25 16:44:12 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 837 ms / 4,000 ms |
| コード長 | 19,546 bytes |
| コンパイル時間 | 2,816 ms |
| コンパイル使用メモリ | 222,848 KB |
| 最終ジャッジ日時 | 2025-02-24 02:02:02 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 76 |
ソースコード
#line 1 "main.cpp"
#include<bits/stdc++.h>
using namespace std;
// #pragma GCC target("avx,avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#ifdef LOCAL
#include <debug.hpp>
#define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define debug(...) (static_cast<void>(0))
#endif
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll,ll>;
using pii = pair<int,int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vul = vector<ull>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vpll = vector<pll>;
using vs = vector<string>;
template<class T> using pq = priority_queue<T,vector<T>, greater<T>>;
#define overload4(_1, _2, _3, _4, name, ...) name
#define overload3(a,b,c,name,...) name
#define rep1(n) for (ll UNUSED_NUMBER = 0; UNUSED_NUMBER < (n); ++UNUSED_NUMBER)
#define rep2(i, n) for (ll i = 0; i < (n); ++i)
#define rep3(i, a, b) for (ll i = (a); i < (b); ++i)
#define rep4(i, a, b, c) for (ll i = (a); i < (b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep2(i,n) for(ll i = (n) - 1;i >= 0;i--)
#define rrep3(i,a,b) for(ll i = (b) - 1;i >= (a);i--)
#define rrep4(i,a,b,c) for(ll i = (a) + ((b)-(a)-1) / (c) * (c);i >= (a);i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define all1(i) begin(i) , end(i)
#define all2(i,a) begin(i) , begin(i) + a
#define all3(i,a,b) begin(i) + a , begin(i) + b
#define all(...) overload3(__VA_ARGS__, all3, all2, all1)(__VA_ARGS__)
#define sum(...) accumulate(all(__VA_ARGS__),0LL)
template<class T> bool chmin(T &a, const T &b){ if(a > b){ a = b; return 1; } else return 0; }
template<class T> bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } else return 0; }
template<class T> auto min(const T& a){return *min_element(all(a));}
template<class T> auto max(const T& a){return *max_element(all(a));}
template<class... Ts> void in(Ts&... t);
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type, name, size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
ll intpow(ll a, ll b){ll ans = 1; while(b){if(b & 1) ans *= a; a *= a; b /= 2;} return ans;}
ll modpow(ll a, ll b, ll p){ ll ans = 1; a %= p;if(a < 0) a += p;while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
bool is_clamp(ll val,ll low,ll high) {return low <= val && val < high;}
void Yes() {cout << "Yes\n";return;}
void No() {cout << "No\n";return;}
void YES() {cout << "YES\n";return;}
void NO() {cout << "NO\n";return;}
template <typename T>
T floor(T a, T b) {return a / b - (a % b && (a ^ b) < 0);}
template <typename T>
T ceil(T x, T y) {return floor(x + y - 1, y);}
template <typename T>
T bmod(T x, T y) {return x - y * floor(x, y);}
template <typename T>
pair<T, T> divmod(T x, T y) {T q = floor(x, y);return {q, x - q * y};}
namespace IO{
#define VOID(a) decltype(void(a))
struct setting{ setting(){cin.tie(nullptr); ios::sync_with_stdio(false);fixed(cout); cout.precision(15);}} setting;
template<int I> struct P : P<I-1>{};
template<> struct P<0>{};
template<class T> void i(T& t){ i(t, P<3>{}); }
void i(vector<bool>::reference t, P<3>){ int a; i(a); t = a; }
template<class T> auto i(T& t, P<2>) -> VOID(cin >> t){ cin >> t; }
template<class T> auto i(T& t, P<1>) -> VOID(begin(t)){ for(auto&& x : t) i(x); }
template<class T, size_t... idx> void ituple(T& t, index_sequence<idx...>){in(get<idx>(t)...);}
template<class T> auto i(T& t, P<0>) -> VOID(tuple_size<T>{}){ituple(t, make_index_sequence<tuple_size<T>::value>{});}
#undef VOID
}
#define unpack(a) (void)initializer_list<int>{(a, 0)...}
template<class... Ts> void in(Ts&... t){ unpack(IO :: i(t)); }
#undef unpack
constexpr long double PI = 3.141592653589793238462643383279L;
template <class F> struct REC {
F f;
REC(F &&f_) : f(forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&...args) const { return f(*this, forward<Args>(args)...); }};
constexpr int mod = 998244353;
//constexpr int mod = 1000000007;
#line 2 "library/graph/graph-template.hpp"
template <typename T>
struct Edge {
int from, to;
T cost;
Edge() = default;
Edge(int _to, T _cost) : from(-1), to(_to), cost(_cost) {}
Edge(int _from, int _to, T _cost) : from(_from), to(_to), cost(_cost) {}
bool operator < (const Edge &a) const { return cost < a.cost; }
bool operator > (const Edge &a) const { return cost > a.cost; }
Edge &operator = (const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
friend ostream operator<<(ostream &os, Edge &edge) { return os << edge.to; }
};
template <typename T>
using Edges = vector<Edge<T>>;
template <typename T>
using Wgraph = vector<Edges<T>>;
using Ugraph = vector<vector<int>>;
Ugraph uinput(int N, int M = -1, bool is_directed = false, int origin = 1) {
Ugraph g(N);
if (M == -1) M = N - 1;
while(M--) {
int a,b;
cin >> a >> b;
a -= origin, b -= origin;
g[a].push_back(b);
if(!is_directed) g[b].push_back(a);
}
return g;
}
template <typename T>
Wgraph<T> winput(int N, int M = -1, bool is_directed = false,int origin = 1) {
Wgraph<T> g(N);
if (M == -1) M = N - 1;
while(M--) {
int a,b;
T c;
cin >> a >> b >> c;
a -= origin, b -= origin;
g[a].emplace_back(b,c);
if(!is_directed) g[b].emplace_back(a,c);
}
return g;
}
#line 3 "library/tree/CartesianTree.hpp"
// return value : pair<graph, root>
template <typename T>
pair<vector<vector<int>>,int> CartesianTree(vector<T> &a,bool is_min) {
int N = (int)a.size();
vector<vector<int>> g(N);
vector<int> p(N,-1), st;
st.reserve(N);
for (int i = 0;i < N;i++) {
int prv = -1;
if(is_min) while (!st.empty() && a[i] < a[st.back()]) {
prv = st.back();
st.pop_back();
}
else while (!st.empty() && a[i] > a[st.back()]) {
prv = st.back();
st.pop_back();
}
if (prv != -1) p[prv] = i;
if (!st.empty()) p[i] = st.back();
st.push_back(i);
}
int root = -1;
for (int i = 0;i < N;i++) {
if (p[i] != -1) g[p[i]].push_back(i);
else root = i;
}
return make_pair(g, root);
}
#line 3 "library/tree/HLD.hpp"
template <typename G = vector<vector<int>>>
struct HLD {
private:
void dfs_sz(int cur) {
size[cur] = 1;
for (auto &dst:g[cur]) {
if (dst == par[cur]) {
if (g[cur].size() >= 2 && int(dst) == int(g[cur][0]))
swap(g[cur][0],g[cur][1]);
else continue;
}
depth[dst] = depth[cur] + 1;
par[dst] = cur;
dfs_sz(dst);
size[cur] += size[dst];
if (size[dst] > size[g[cur][0]]) {
swap(dst,g[cur][0]);
}
}
}
void dfs_hld(int cur) {
ord[id] = cur;
down[cur] = id++;
for (auto dst:g[cur]) {
if (dst == par[cur]) continue;
nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst));
dfs_hld(dst);
}
up[cur] = id;
}
public:
// [u, v)
vector<pair<int,int>> ascend(int u,int v) const {
vector<pair<int,int>> res;
while (nxt[u] != nxt[v]) {
res.emplace_back(down[u],down[nxt[u]]);
u = par[nxt[u]];
}
if (u != v) res.emplace_back(down[u],down[v] + 1);
return res;
}
// (u, v]
vector<pair<int,int>> descend(int u,int v) const {
if (u == v) return {};
if (nxt[u] == nxt[v]) return {{down[u] + 1,down[v]}};
auto res = descend(u,par[nxt[v]]);
res.emplace_back(down[nxt[v]],down[v]);
return res;
}
G g;
int id;
vector<int> size,depth,down,up,ord,nxt,par;
HLD() = default;
HLD(G& _g,int root = 0)
: g(_g),
id(0),
size(g.size(),0),
depth(g.size(),0),
down(g.size(),-1),
up(g.size(),-1),
ord(g.size(),0),
nxt(g.size(),root),
par(g.size(),-1) {
dfs_sz(root);
dfs_hld(root);
}
void build(int root) {
dfs_sz(root);
dfs_hld(root);
}
pair<int,int> idx(int i) const {return make_pair(down[i], up[i]);}
template <typename F>
void path_query(int u,int v,bool vertex,const F& f) {
int l = lca(u,v);
for (auto &&[a,b] : ascend(u,l)) {
int s = a + 1, t = b;
s > t ? f(t,s) : f(s,t);
}
if (vertex) f(down[l], down[l] + 1);
for (auto &&[a,b] : descend(l,v)) {
int s = a,t = b + 1;
s > t ? f(t,s) : f(s,t);
}
}
template <typename F>
void path_noncommutative_query(int u,int v,bool vertex,const F& f) {
int l = lca(u,v);
for(auto &&[a,b]:ascend(u,l)) f(a + 1,b);
if(vertex) f(down[l],down[l] + 1);
for(auto &&[a,b]:descend(l,v)) f(a,b + 1);
}
template <typename F>
void subtree_query(int u,bool vertex,const F& f) {
f(down[u] + int(!vertex), up[u]);
}
int lca(int a,int b) {
while (nxt[a] != nxt[b]) {
if (down[a] < down[b]) swap(a, b);
a = par[nxt[a]];
}
return depth[a] < depth[b] ? a : b;
}
int dist(int a,int b) {return depth[a] + depth[b] - depth[lca(a, b)] * 2;}
int kth_ancestor(int u,int k) {
if(k < 0) return -1;
while(u >= 0) {
int h = nxt[u];
if(down[u] - k >= down[h]) return ord[down[u] - k];
k -= down[u] - down[h] + 1;
u = par[h];
}
return -1;
}
int next(int s,int t) {
assert(s != t && 0 <= s && s < g.size() && 0 <= t && t < g.size());
if(depth[s] >= depth[t]) return par[s];
int u = kth_ancestor(t,depth[t] - depth[s] - 1);
return par[u] == s ? u : par[s];
}
// s - t 間のパス上の頂点のうち s から距離 i の頂点
// (dist(s, t) < i のとき -1)
int jump(int s,int t,int d) {
int lc = lca(s,t);
int d1 = depth[s] - depth[lc];
if(d <= d1) return kth_ancestor(s,d);
int d2 = d1 + depth[t] - depth[lc];
if(d <= d2) return kth_ancestor(t,d2 - d);
return -1;
}
};
#line 2 "library/segtree/lazysegtree.hpp"
template <class S,
S (*op)(S, S),
S (*e)(),
class F,
S (*mapping)(F, S),
F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
explicit lazy_segtree(int n) : lazy_segtree(vector<S>(n, e())) {}
explicit lazy_segtree(const vector<S>& v) : _n(int(v.size())) {
log = 0;
while ((1U << log) < (unsigned int)(_n)) log++;
size = 1 << log;
d = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() { return d[1]; }
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)> int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G> int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)> int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G> int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
vector<S> d;
vector<F> lz;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
#line 103 "main.cpp"
const ll LINF = 0x1fffffffffffffff;
ll op(ll x,ll y) {return max(x,y);}
ll e() {return -LINF;}
ll mapping(ll f,ll x) { return f + x;}
ll composition (ll L,ll R) {return R + L;}
ll id() {return 0;}
#line 2 "library/data-structure/FenwickTree.hpp"
template <typename T>
struct FenwickTree{
int N;
T total = 0;
vector<T> data;
FenwickTree() = default;
FenwickTree(int size) {init(size);}
FenwickTree(vector<T> &v) {
N = v.size() + 2;
data.reserve(N + 1);
data.emplace_back(0);
for(auto &e:v) {
total += e;
data.emplace_back(e);
}
data.emplace_back(0);
data.emplace_back(0);
for (int i = 1; i < N - 1; ++i) {
int j = i + (i & -i);
if (j < N - 1) data[j] = data[i] + data[j];
}
}
void init(int size) {
N = size + 2;
data.assign(N + 1,{});
}
// get sum of [0,k]
T prod(int k) const {
if (k < 0) return T{};
T ret{};
for (++k;k > 0;k -= k & -k) ret += data[k];
return ret;
}
// get sum of [l,r)
inline T prod(int l,int r) const {return prod(r - 1) - prod(l - 1);}
// get value of k
inline T get(int k) const {return prod(k) - prod(k - 1); }
T all_prod() const {return total;}
void add(int k, T x) {
total += x;
for(++k;k < N;k += k & -k) data[k] += x;
}
// minimize i s.t. sum(i) >= w
int lower_bound(T w) {
if (w <= 0) return 0;
int x = 0;
for(int k = 1 <<__lg(N);k;k >>= 1) {
if (x + k <= N - 1 && data[x + k] < w) {
w -= data[x + k];
x += k;
}
}
return x;
}
// minimize i s.t. sum(i) > w
int upper_bound(T w) {
if (w < 0) return 0;
int x = 0;
for(int k = 1 <<__lg(N);k;k >>= 1) {
if (x + k <= N - 1 && data[x + k] <= w) {
w -= data[x + k];
x += k;
}
}
return x;
}
};
#line 110 "main.cpp"
int main() {
INT(n,q);
LL(l);
VEC(ll,a,n);
VEC(int,x,n);
auto [g,root] = CartesianTree<ll>(a,false);
HLD<vvi> hld(g,root);
vi par(n,-1);
vl su(n);
auto dfs = REC([&](auto &&f,int now) -> void {
for(auto &nex:g[now]) {
f(nex);
su[now] += su[nex];
par[nex] = now;
}
su[now] += x[now];
});
dfs(root);
vl init(n,-4e18);
rep(i,n) {
if(i != root) {
init[hld.idx(i).first] = a[par[i]] - su[i];
}
}
FenwickTree<ll> fw(n);
rep(i,n) {
fw.add(hld.idx(i).first,x[i]);
}
lazy_segtree<ll,op,e,ll,mapping,composition,id> seg(init);
ll update_val = 0;
auto f1 = [&](int u,int v) {
seg.apply(u,v,update_val);
};
ll ma = 0;
auto f2 = [&](int u,int v) {
chmax(ma,seg.prod(u,v));
};
ll pl = 0;
auto f3 = [&](int u,int v) {
pl += fw.prod(u,v);
};
rep(i,q) {
INT(cmd);
if(cmd == 1) {
INT(a,b);
a--;
update_val = x[a] - b;
hld.path_query(root,a,false,f1);
x[a] = b;
fw.add(hld.idx(a).first,-update_val);
}
else {
INT(c);
c--;
if(a[c] > a[c+1]) c++;
if(a[c] >= l) {
cout << l << '\n';
continue;
}
int now = c;
rrep(j,18) {
int nex = hld.kth_ancestor(now,1 << j);
if(nex == -1) continue;
ma = 0;
hld.path_query(now,nex,false,f2);
//debug(ma,nex);
if(ma < l) now = nex;
}
pl = 0;
hld.subtree_query(now,true,f3);
cout << l + pl << '\n';
}
}
}
siganai