結果
| 問題 |
No.2861 Slime Party
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-08-25 17:33:30 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,157 ms / 4,000 ms |
| コード長 | 26,345 bytes |
| コンパイル時間 | 4,584 ms |
| コンパイル使用メモリ | 292,452 KB |
| 実行使用メモリ | 37,936 KB |
| 最終ジャッジ日時 | 2024-08-25 17:34:29 |
| 合計ジャッジ時間 | 57,085 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 76 |
ソースコード
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #define INTERACTIVE
#include <bits/stdc++.h>
using namespace std;
namespace templates {
// type
using ll = long long;
using ull = unsigned long long;
using Pii = pair<int, int>;
using Pil = pair<int, ll>;
using Pli = pair<ll, int>;
using Pll = pair<ll, ll>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
// clang-format off
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
// clang-format on
// for loop
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)
// declare and input
// clang-format off
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
// clang-format on
// const value
const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;
const double PI = acos(-1);
// other macro
#if !defined(RIN__LOCAL) && !defined(INTERACTIVE)
#define endl "\n"
#endif
#define spa ' '
#define len(A) ll(A.size())
#define all(A) begin(A), end(A)
// function
vector<char> stoc(string &S) {
int n = S.size();
vector<char> ret(n);
for (int i = 0; i < n; i++) ret[i] = S[i];
return ret;
}
string ctos(vector<char> &S) {
int n = S.size();
string ret = "";
for (int i = 0; i < n; i++) ret += S[i];
return ret;
}
template <class T>
auto min(const T &a) {
return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
auto b = clamp(a, l, r);
return (a != b ? a = b, 1 : 0);
}
template <typename T>
T sum(vector<T> &A) {
T tot = 0;
for (auto a : A) tot += a;
return tot;
}
template <typename T>
vector<T> compression(vector<T> X) {
sort(all(X));
X.erase(unique(all(X)), X.end());
return X;
}
// input and output
namespace io {
// __int128_t
std::ostream &operator<<(std::ostream &dest, __int128_t value) {
std::ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// vector<T>
template <typename T>
istream &operator>>(istream &is, vector<T> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << ' ';
}
return os;
}
// vector<vector<T>>
template <typename T>
istream &operator>>(istream &is, vector<vector<T>> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// pair<S, T>
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &A) {
is >> A.first >> A.second;
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, pair<S, T> &A) {
os << A.first << ' ' << A.second;
return os;
}
// vector<pair<S, T>>
template <typename S, typename T>
istream &operator>>(istream &is, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
is >> A[i];
}
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// tuple
template <typename T, size_t N>
struct TuplePrint {
static ostream &print(ostream &os, const T &t) {
TuplePrint<T, N - 1>::print(os, t);
os << ' ' << get<N - 1>(t);
return os;
}
};
template <typename T>
struct TuplePrint<T, 1> {
static ostream &print(ostream &os, const T &t) {
os << get<0>(t);
return os;
}
};
template <typename... Args>
ostream &operator<<(ostream &os, const tuple<Args...> &t) {
TuplePrint<decltype(t), sizeof...(Args)>::print(os, t);
return os;
}
// io functions
void FLUSH() {
cout << flush;
}
void print() {
cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
cout << head;
if (sizeof...(Tail)) cout << spa;
print(std::forward<Tail>(tail)...);
}
template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
int n = A.size();
for (int i = 0; i < n; i++) {
cout << A[i];
if (i != n - 1) cout << sep;
}
cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
cout << A << end;
}
template <typename T>
void prispa(T A) {
priend(A, spa);
}
template <typename T, typename S>
bool printif(bool f, T A, S B) {
if (f)
print(A);
else
print(B);
return f;
}
template <class... T>
void inp(T &...a) {
(cin >> ... >> a);
}
} // namespace io
using namespace io;
// read graph
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<int>> edges(n, vector<int>());
for (int i = 0; i < m; i++) {
INT(u, v);
u -= indexed;
v -= indexed;
edges[u].push_back(v);
if (!direct) edges[v].push_back(u);
}
return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
return read_edges(n, n - 1, false, indexed);
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
for (int i = 0; i < m; i++) {
INT(u, v);
T w;
inp(w);
u -= indexed;
v -= indexed;
edges[u].push_back({v, w});
if (!direct) edges[v].push_back({u, w});
}
return edges;
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
return read_wedges<T>(n, n - 1, false, indexed);
}
// yes / no
namespace yesno {
// yes
inline bool yes(bool f = true) {
cout << (f ? "yes" : "no") << endl;
return f;
}
inline bool Yes(bool f = true) {
cout << (f ? "Yes" : "No") << endl;
return f;
}
inline bool YES(bool f = true) {
cout << (f ? "YES" : "NO") << endl;
return f;
}
// no
inline bool no(bool f = true) {
cout << (!f ? "yes" : "no") << endl;
return f;
}
inline bool No(bool f = true) {
cout << (!f ? "Yes" : "No") << endl;
return f;
}
inline bool NO(bool f = true) {
cout << (!f ? "YES" : "NO") << endl;
return f;
}
// possible
inline bool possible(bool f = true) {
cout << (f ? "possible" : "impossible") << endl;
return f;
}
inline bool Possible(bool f = true) {
cout << (f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool POSSIBLE(bool f = true) {
cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// impossible
inline bool impossible(bool f = true) {
cout << (!f ? "possible" : "impossible") << endl;
return f;
}
inline bool Impossible(bool f = true) {
cout << (!f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool IMPOSSIBLE(bool f = true) {
cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// Alice Bob
inline bool Alice(bool f = true) {
cout << (f ? "Alice" : "Bob") << endl;
return f;
}
inline bool Bob(bool f = true) {
cout << (f ? "Bob" : "Alice") << endl;
return f;
}
// Takahashi Aoki
inline bool Takahashi(bool f = true) {
cout << (f ? "Takahashi" : "Aoki") << endl;
return f;
}
inline bool Aoki(bool f = true) {
cout << (f ? "Aoki" : "Takahashi") << endl;
return f;
}
} // namespace yesno
using namespace yesno;
} // namespace templates
using namespace templates;
#ifndef ATCODER_LAZYSEGTREE_HPP
#define ATCODER_LAZYSEGTREE_HPP 1
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#endif // ATCODER_INTERNAL_BITOP_HPP
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F),
F (*id)()>
struct lazy_segtree {
public:
lazy_segtree() : lazy_segtree(0) {}
explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
explicit lazy_segtree(const std::vector<S> &v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
lz = std::vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return d[p];
}
S prod(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() {
return d[1];
}
void apply(int p, F f) {
assert(0 <= p && p < _n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
d[p] = mapping(f, d[p]);
for (int i = 1; i <= log; i++) update(p >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l && l <= r && r <= _n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <bool (*g)(S)>
int max_right(int l) {
return max_right(l, [](S x) { return g(x); });
}
template <class G>
int max_right(int l, G g) {
assert(0 <= l && l <= _n);
assert(g(e()));
if (l == _n) return _n;
l += size;
for (int i = log; i >= 1; i--) push(l >> i);
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!g(op(sm, d[l]))) {
while (l < size) {
push(l);
l = (2 * l);
if (g(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*g)(S)>
int min_left(int r) {
return min_left(r, [](S x) { return g(x); });
}
template <class G>
int min_left(int r, G g) {
assert(0 <= r && r <= _n);
assert(g(e()));
if (r == 0) return 0;
r += size;
for (int i = log; i >= 1; i--) push((r - 1) >> i);
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!g(op(d[r], sm))) {
while (r < size) {
push(r);
r = (2 * r + 1);
if (g(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
std::vector<F> lz;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
} // namespace atcoder
#endif // ATCODER_LAZYSEGTREE_HPP
struct HLD {
int n, path;
std::vector<std::vector<int>> edges;
std::vector<int> siz;
std::vector<int> par;
std::vector<int> depth;
std::vector<int> path_ind;
std::vector<int> path_root;
std::vector<int> heavy_child;
std::vector<bool> isheavy;
std::vector<int> L;
std::vector<int> R;
HLD(int n) : n(n) {
edges.resize(n);
siz.assign(n, -1);
par.assign(n, -1);
depth.assign(n, -1);
path_ind.assign(n, -1);
heavy_child.assign(n, -1);
isheavy.assign(n, false);
L.assign(n, -1);
R.assign(n, -1);
}
void read_edges(int indexed = 1) {
int u, v;
for (int i = 0; i < n - 1; i++) {
std::cin >> u >> v;
u -= indexed;
v -= indexed;
edges[u].push_back(v);
edges[v].push_back(u);
}
}
void add_edge(int u, int v) {
edges[u].push_back(v);
edges[v].push_back(u);
}
void build(int root = 0) {
depth[root] = 0;
std::stack<int> st;
std::vector<int> route;
st.push(root);
route.push_back(root);
while (!st.empty()) {
int pos = st.top();
st.pop();
for (auto npos : edges[pos]) {
if (depth[npos] == -1) {
depth[npos] = depth[pos] + 1;
par[npos] = pos;
st.push(npos);
route.push_back(npos);
}
}
}
reverse(route.begin(), route.end());
for (auto pos : route) {
siz[pos] = 1;
int ma = -1;
for (auto npos : edges[pos]) {
if (depth[npos] > depth[pos]) siz[pos] += siz[npos];
if (siz[npos] > ma) {
ma = siz[npos];
heavy_child[pos] = npos;
}
}
if (heavy_child[pos] != -1) isheavy[heavy_child[pos]] = true;
}
isheavy[root] = true;
path = 0;
st.push(~root);
st.push(root);
path_root.push_back(root);
int cc = 0;
while (!st.empty()) {
int pos = st.top();
st.pop();
if (pos >= 0) {
L[pos] = cc++;
if (!isheavy[pos]) {
path++;
path_root.push_back(pos);
}
path_ind[pos] = path;
for (auto npos : edges[pos]) {
if (npos == par[pos] || npos == heavy_child[pos]) continue;
st.push(~npos);
st.push(npos);
}
if (heavy_child[pos] != -1) {
int npos = heavy_child[pos];
st.push(~npos);
st.push(npos);
}
} else {
pos = ~pos;
R[pos] = cc;
}
}
}
std::vector<std::pair<int, int>> get_path(int u, int v) {
std::vector<int> ll;
std::vector<int> rr;
ll.push_back(u);
rr.push_back(v);
while (path_ind[u] != path_ind[v]) {
if (depth[path_root[path_ind[u]]] >= depth[path_root[path_ind[v]]]) {
u = path_root[path_ind[u]];
ll.push_back(u);
u = par[u];
ll.push_back(u);
} else {
v = path_root[path_ind[v]];
rr.push_back(v);
v = par[v];
rr.push_back(v);
}
}
reverse(rr.begin(), rr.end());
ll.insert(ll.end(), rr.begin(), rr.end());
int n = ll.size();
std::vector<std::pair<int, int>> res(n / 2);
for (int i = 0; i < n; i += 2) {
res[i / 2] = {ll[i], ll[i + 1]};
}
return res;
}
int lca(int u, int v) {
while (path_ind[u] != path_ind[v]) {
if (depth[path_root[path_ind[u]]] >= depth[path_root[path_ind[v]]])
u = par[path_root[path_ind[u]]];
else
v = par[path_root[path_ind[v]]];
}
return (depth[u] <= depth[v]) ? u : v;
}
int dist(int u, int v) {
int p = lca(u, v);
return depth[u] + depth[v] - 2 * depth[p];
}
template <typename T>
std::vector<T> reorder(std::vector<T> &A, bool rev = false) {
assert(int(A.size()) == n);
std::vector<T> ret(n);
for (int i = 0; i < n; i++) {
ret[L[i]] = A[i];
}
if (rev) reverse(ret.begin(), ret.end());
return ret;
}
};
template <typename T>
std::vector<int> CartesianTreeReverse(std::vector<T> &A) {
int n = A.size();
std::stack<std::pair<T, int>> st;
std::vector<int> par(n, -1);
for (int i = 0; i < n; i++) {
while (!st.empty() && A[i] > st.top().first) {
int j = st.top().second;
st.pop();
if (!st.empty() && A[i] > st.top().first) {
par[j] = st.top().second;
} else {
par[j] = i;
}
}
st.push({A[i], i});
}
while (st.size() >= 2u) {
int i = st.top().second;
st.pop();
par[i] = st.top().second;
}
int i = st.top().second;
par[i] = i;
return par;
}
template <typename T>
std::vector<int> CartesianTree(std::vector<T> &A, bool rev = false) {
if (rev) return CartesianTreeReverse(A);
int n = A.size();
std::stack<std::pair<T, int>> st;
std::vector<int> par(n, -1);
for (int i = 0; i < n; i++) {
while (!st.empty() && A[i] < st.top().first) {
int j = st.top().second;
st.pop();
if (!st.empty() && A[i] < st.top().first) {
par[j] = st.top().second;
} else {
par[j] = i;
}
}
st.push({A[i], i});
}
while (st.size() >= 2u) {
int i = st.top().second;
st.pop();
par[i] = st.top().second;
}
int i = st.top().second;
par[i] = i;
return par;
}
const ll inf = 1LL << 60;
struct S {
ll diff;
ll tot;
};
S op(S l, S r) {
return {min(l.diff, r.diff), l.tot + r.tot};
}
S e() {
return {inf, 0};
}
using F = ll;
S mapping(F f, S x) {
return {x.diff + f, x.tot + f};
}
F composition(F f, F g) {
return f + g;
}
F id() {
return 0;
}
void solve() {
LL(n, Q, L);
VEC(ll, A, n);
VEC(ll, X, n);
auto ct = CartesianTree(A, true);
int root = -1;
HLD G(n);
fori(i, n) {
if (i == ct[i]) {
root = i;
} else {
G.add_edge(i, ct[i]);
}
}
G.build(root);
vec(S, init, n);
fori(i, n) {
if (i == root) {
init[i] = {-inf, 0};
} else {
init[i] = {-A[ct[i]], 0};
}
}
init = G.reorder(init);
atcoder::lazy_segtree<S, op, e, F, mapping, composition, id> seg(init);
auto add = [&](int u, ll x) {
for (auto [uu, vv] : G.get_path(u, root)) {
uu = G.L[uu];
vv = G.L[vv];
if (uu > vv) swap(uu, vv);
seg.apply(uu, vv + 1, x);
}
};
fori(i, n) {
add(i, X[i]);
}
fori(Q) {
INT(t);
if (t == 1) {
INT(a, b);
a--;
add(a, b - X[a]);
X[a] = b;
} else {
INT(c);
if (A[c - 1] < A[c]) c--;
if (A[c] >= L) {
print(L);
continue;
}
for (auto [uu, vv] : G.get_path(c, root)) {
uu = G.L[uu];
vv = G.L[vv];
assert(uu >= vv);
swap(uu, vv);
auto res = seg.prod(uu, vv + 1);
if (res.diff > -L) {
continue;
}
int l = seg.min_left(vv + 1, [&](S x) { return x.diff > -L; });
auto res1 = seg.get(l - 1);
print(res1.tot + L);
break;
}
}
}
}
int main() {
#ifndef INTERACTIVE
std::cin.tie(0)->sync_with_stdio(0);
#endif
// std::cout << std::fixed << std::setprecision(12);
int t;
t = 1;
// std::cin >> t;
while (t--) solve();
return 0;
}
// // #pragma GCC target("avx2")
// // #pragma GCC optimize("O3")
// // #pragma GCC optimize("unroll-loops")
// // #define INTERACTIVE
//
// #include "kyopro-cpp/template.hpp"
//
// #include "atcoder/lazysegtree.hpp"
// #include "tree/HLD.hpp"
// #include "tree/cartesianTree.hpp"
//
// const ll inf = 1LL << 60;
//
// struct S {
// ll diff;
// ll tot;
// };
// S op(S l, S r) {
// return {min(l.diff, r.diff), l.tot + r.tot};
// }
// S e() {
// return {inf, 0};
// }
// using F = ll;
// S mapping(F f, S x) {
// return {x.diff + f, x.tot + f};
// }
// F composition(F f, F g) {
// return f + g;
// }
// F id() {
// return 0;
// }
//
// void solve() {
// LL(n, Q, L);
// VEC(ll, A, n);
// VEC(ll, X, n);
// auto ct = CartesianTree(A, true);
//
// int root = -1;
// HLD G(n);
// fori(i, n) {
// if (i == ct[i]) {
// root = i;
// } else {
// G.add_edge(i, ct[i]);
// }
// }
// G.build(root);
//
// vec(S, init, n);
// fori(i, n) {
// if (i == root) {
// init[i] = {-inf, 0};
// } else {
// init[i] = {-A[ct[i]], 0};
// }
// }
//
// init = G.reorder(init);
// atcoder::lazy_segtree<S, op, e, F, mapping, composition, id> seg(init);
//
// auto add = [&](int u, ll x) {
// for (auto [uu, vv] : G.get_path(u, root)) {
// uu = G.L[uu];
// vv = G.L[vv];
// if (uu > vv) swap(uu, vv);
// seg.apply(uu, vv + 1, x);
// }
// };
//
// fori(i, n) {
// add(i, X[i]);
// }
//
// fori(Q) {
// INT(t);
// if (t == 1) {
// INT(a, b);
// a--;
// add(a, b - X[a]);
// X[a] = b;
// } else {
// INT(c);
// if (A[c - 1] < A[c]) c--;
// if (A[c] >= L) {
// print(L);
// continue;
// }
//
// for (auto [uu, vv] : G.get_path(c, root)) {
// uu = G.L[uu];
// vv = G.L[vv];
// assert(uu >= vv);
// swap(uu, vv);
// auto res = seg.prod(uu, vv + 1);
// if (res.diff > -L) {
// continue;
// }
// int l = seg.min_left(vv + 1, [&](S x) { return x.diff > -L; });
// auto res1 = seg.get(l - 1);
// print(res1.tot + L);
// break;
// }
// }
// }
// }
//
// int main() {
// #ifndef INTERACTIVE
// std::cin.tie(0)->sync_with_stdio(0);
// #endif
// // std::cout << std::fixed << std::setprecision(12);
// int t;
// t = 1;
// // std::cin >> t;
// while (t--) solve();
// return 0;
// }