結果

問題 No.2885 Range Triangle Collision Decision Queries
ユーザー Iroha_3856Iroha_3856
提出日時 2024-08-30 00:27:17
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 4,463 bytes
コンパイル時間 638 ms
コンパイル使用メモリ 82,380 KB
実行使用メモリ 128,148 KB
最終ジャッジ日時 2024-09-07 19:41:36
合計ジャッジ時間 68,818 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 AC 1,420 ms
126,424 KB
testcase_06 AC 1,437 ms
128,148 KB
testcase_07 AC 1,440 ms
127,652 KB
testcase_08 AC 1,507 ms
127,124 KB
testcase_09 AC 1,446 ms
127,092 KB
testcase_10 AC 1,643 ms
126,360 KB
testcase_11 AC 1,500 ms
126,152 KB
testcase_12 AC 1,446 ms
126,608 KB
testcase_13 AC 1,429 ms
126,416 KB
testcase_14 AC 1,393 ms
126,904 KB
testcase_15 AC 1,420 ms
126,196 KB
testcase_16 AC 1,401 ms
126,136 KB
testcase_17 AC 678 ms
124,756 KB
testcase_18 AC 1,376 ms
126,484 KB
testcase_19 AC 1,408 ms
126,396 KB
testcase_20 AC 1,288 ms
125,656 KB
testcase_21 AC 1,417 ms
126,320 KB
testcase_22 AC 1,093 ms
126,736 KB
testcase_23 AC 1,465 ms
125,940 KB
testcase_24 AC 1,427 ms
126,308 KB
testcase_25 AC 1,229 ms
126,240 KB
testcase_26 AC 1,443 ms
126,416 KB
testcase_27 AC 1,351 ms
126,264 KB
testcase_28 AC 1,388 ms
126,248 KB
testcase_29 AC 1,407 ms
126,668 KB
testcase_30 AC 1,440 ms
125,732 KB
testcase_31 AC 1,428 ms
126,768 KB
testcase_32 AC 1,356 ms
126,512 KB
testcase_33 AC 1,458 ms
126,308 KB
testcase_34 AC 1,403 ms
125,872 KB
testcase_35 AC 1,411 ms
126,632 KB
testcase_36 AC 1,326 ms
126,816 KB
testcase_37 AC 1,415 ms
126,480 KB
testcase_38 AC 1,462 ms
126,184 KB
testcase_39 AC 1,405 ms
126,228 KB
testcase_40 AC 1,399 ms
125,776 KB
testcase_41 AC 1,490 ms
126,320 KB
testcase_42 AC 1,328 ms
125,456 KB
testcase_43 AC 1,436 ms
126,312 KB
testcase_44 AC 1,408 ms
126,228 KB
testcase_45 RE -
testcase_46 RE -
testcase_47 AC 1,352 ms
126,672 KB
testcase_48 AC 1,407 ms
125,828 KB
testcase_49 RE -
testcase_50 RE -
testcase_51 RE -
testcase_52 RE -
testcase_53 AC 58 ms
68,632 KB
testcase_54 AC 59 ms
68,288 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ACL-Python/SegTree
import typing

def _ceil_pow2(n: int) -> int:
    x = 0
    while (1 << x) < n:
        x += 1
    return x

def _bsf(n: int) -> int:
    x = 0
    while n % 2 == 0:
        x += 1
        n //= 2
    return x

class SegTree:
    def __init__(self,
                 op: typing.Callable[[typing.Any, typing.Any], typing.Any],
                 e: typing.Any,
                 v: typing.Union[int, typing.List[typing.Any]]) -> None:
        self._op = op
        self._e = e

        if isinstance(v, int):
            v = [e] * v

        self._n = len(v)
        self._log = _ceil_pow2(self._n)
        self._size = 1 << self._log
        self._d = [e] * (2 * self._size)

        for i in range(self._n):
            self._d[self._size + i] = v[i]
        for i in range(self._size - 1, 0, -1):
            self._update(i)

    def set(self, p: int, x: typing.Any) -> None:
        assert 0 <= p < self._n

        p += self._size
        self._d[p] = x
        for i in range(1, self._log + 1):
            self._update(p >> i)

    def get(self, p: int) -> typing.Any:
        assert 0 <= p < self._n

        return self._d[p + self._size]

    def prod(self, left: int, right: int) -> typing.Any:
        assert 0 <= left <= right <= self._n
        sml = self._e
        smr = self._e
        left += self._size
        right += self._size

        while left < right:
            if left & 1:
                sml = self._op(sml, self._d[left])
                left += 1
            if right & 1:
                right -= 1
                smr = self._op(self._d[right], smr)
            left >>= 1
            right >>= 1

        return self._op(sml, smr)

    def all_prod(self) -> typing.Any:
        return self._d[1]

    def max_right(self, left: int,
                  f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= left <= self._n
        assert f(self._e)

        if left == self._n:
            return self._n

        left += self._size
        sm = self._e

        first = True
        while first or (left & -left) != left:
            first = False
            while left % 2 == 0:
                left >>= 1
            if not f(self._op(sm, self._d[left])):
                while left < self._size:
                    left *= 2
                    if f(self._op(sm, self._d[left])):
                        sm = self._op(sm, self._d[left])
                        left += 1
                return left - self._size
            sm = self._op(sm, self._d[left])
            left += 1

        return self._n

    def min_left(self, right: int,
                 f: typing.Callable[[typing.Any], bool]) -> int:
        assert 0 <= right <= self._n
        assert f(self._e)

        if right == 0:
            return 0

        right += self._size
        sm = self._e

        first = True
        while first or (right & -right) != right:
            first = False
            right -= 1
            while right > 1 and right % 2:
                right >>= 1
            if not f(self._op(self._d[right], sm)):
                while right < self._size:
                    right = 2 * right + 1
                    if f(self._op(self._d[right], sm)):
                        sm = self._op(self._d[right], sm)
                        right -= 1
                return right + 1 - self._size
            sm = self._op(self._d[right], sm)

        return 0

    def _update(self, k: int) -> None:
        self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])
#ACL-Python/SegTree 終わり

def convert(a, b, d, k):
	if k == 0:
	 #__が分離直線, |が分離軸
	    return b-d, b;
	elif k == 1:
		#/が分離直線、\が分離軸
		return a-b, a-b+2*d
	else:
		#\が分離直線、/が分離軸
		return a+b-2*d, a+b

N = int(input())
A, B, D = [0]*N, [0]*N, [0]*N
for i in range(N):
	A[i], B[i], D[i] = map(int, input().split())

Q = int(input())
S, L, R = [0]*N, [0]*N, [0]*N
for i in range(Q):
	S[i], L[i], R[i] = map(int, input().split())

ans = [True] * Q

for k in range(3):
	p, q = [0]*N, [0]*N
	for i in range(N):
		p[i], q[i] = convert(A[i], B[i], D[i], k)
	INF = 8*10**18
	pseg, qseg = SegTree(max, -INF, p), SegTree(min, INF, q)
	for i in range(Q):
		resp, resq = pseg.prod(L[i]-1, R[i]), qseg.prod(L[i]-1, R[i])
		sp, sq = p[S[i]-1], q[S[i]-1]
		if resp < sq and resq > sp:
			None
		else:
			ans[i] = False

for i in range(Q):
	if ans[i]:
		print("Yes")
	else:
		print("No")
0