結果
| 問題 |
No.2885 Range Triangle Collision Decision Queries
|
| コンテスト | |
| ユーザー |
Iroha_3856
|
| 提出日時 | 2024-08-30 10:13:45 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,491 ms / 3,000 ms |
| コード長 | 4,650 bytes |
| コンパイル時間 | 381 ms |
| コンパイル使用メモリ | 82,084 KB |
| 実行使用メモリ | 128,160 KB |
| 最終ジャッジ日時 | 2024-09-07 19:43:45 |
| 合計ジャッジ時間 | 75,539 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 53 |
ソースコード
#segtreeライブラリ (ac-library python)
#https://github.com/not522/ac-library-python/blob/master/atcoder/segtree.py
import typing
def _ceil_pow2(n: int) -> int:
x = 0
while (1 << x) < n:
x += 1
return x
def _bsf(n: int) -> int:
x = 0
while n % 2 == 0:
x += 1
n //= 2
return x
class SegTree:
def __init__(self,
op: typing.Callable[[typing.Any, typing.Any], typing.Any],
e: typing.Any,
v: typing.Union[int, typing.List[typing.Any]]) -> None:
self._op = op
self._e = e
if isinstance(v, int):
v = [e] * v
self._n = len(v)
self._log = _ceil_pow2(self._n)
self._size = 1 << self._log
self._d = [e] * (2 * self._size)
for i in range(self._n):
self._d[self._size + i] = v[i]
for i in range(self._size - 1, 0, -1):
self._update(i)
def set(self, p: int, x: typing.Any) -> None:
assert 0 <= p < self._n
p += self._size
self._d[p] = x
for i in range(1, self._log + 1):
self._update(p >> i)
def get(self, p: int) -> typing.Any:
assert 0 <= p < self._n
return self._d[p + self._size]
def prod(self, left: int, right: int) -> typing.Any:
assert 0 <= left <= right <= self._n
sml = self._e
smr = self._e
left += self._size
right += self._size
while left < right:
if left & 1:
sml = self._op(sml, self._d[left])
left += 1
if right & 1:
right -= 1
smr = self._op(self._d[right], smr)
left >>= 1
right >>= 1
return self._op(sml, smr)
def all_prod(self) -> typing.Any:
return self._d[1]
def max_right(self, left: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= left <= self._n
assert f(self._e)
if left == self._n:
return self._n
left += self._size
sm = self._e
first = True
while first or (left & -left) != left:
first = False
while left % 2 == 0:
left >>= 1
if not f(self._op(sm, self._d[left])):
while left < self._size:
left *= 2
if f(self._op(sm, self._d[left])):
sm = self._op(sm, self._d[left])
left += 1
return left - self._size
sm = self._op(sm, self._d[left])
left += 1
return self._n
def min_left(self, right: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= right <= self._n
assert f(self._e)
if right == 0:
return 0
right += self._size
sm = self._e
first = True
while first or (right & -right) != right:
first = False
right -= 1
while right > 1 and right % 2:
right >>= 1
if not f(self._op(self._d[right], sm)):
while right < self._size:
right = 2 * right + 1
if f(self._op(self._d[right], sm)):
sm = self._op(self._d[right], sm)
right -= 1
return right + 1 - self._size
sm = self._op(self._d[right], sm)
return 0
def _update(self, k: int) -> None:
self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])
#ライブラリ終わり
#投影した結果を返す
def convert(a, b, d, k):
if k == 0:
#__が分離直線, |が分離軸
return b-d, b;
elif k == 1:
#/が分離直線、\が分離軸
return a-b, a-b+2*d
else:
#\が分離直線、/が分離軸
return a+b-2*d, a+b
#入力
N = int(input())
A, B, D = [0]*N, [0]*N, [0]*N
for i in range(N):
A[i], B[i], D[i] = map(int, input().split())
Q = int(input())
S, L, R = [0]*Q, [0]*Q, [0]*Q
for i in range(Q):
S[i], L[i], R[i] = map(int, input().split())
ans = [True] * Q
#各分離軸について小問題を解く
for k in range(3):
p, q = [0]*N, [0]*N
for i in range(N):
p[i], q[i] = convert(A[i], B[i], D[i], k)
INF = 8*10**18
pseg, qseg = SegTree(max, -INF, p), SegTree(min, INF, q)
for i in range(Q):
resp, resq = pseg.prod(L[i]-1, R[i]), qseg.prod(L[i]-1, R[i])
sp, sq = p[S[i]-1], q[S[i]-1]
if resp < sq and resq > sp:
None
else:
ans[i] = False
#出力
for i in range(Q):
if ans[i]:
print("Yes")
else:
print("No")
Iroha_3856