結果

問題 No.274 The Wall
ユーザー hashiryohashiryo
提出日時 2024-09-03 20:42:39
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 567 ms / 2,000 ms
コード長 5,773 bytes
コンパイル時間 2,590 ms
コンパイル使用メモリ 220,532 KB
実行使用メモリ 253,348 KB
最終ジャッジ日時 2024-09-03 20:42:44
合計ジャッジ時間 5,070 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 165 ms
86,740 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 567 ms
253,348 KB
testcase_12 AC 7 ms
6,944 KB
testcase_13 AC 2 ms
6,944 KB
testcase_14 AC 4 ms
6,940 KB
testcase_15 AC 8 ms
6,944 KB
testcase_16 AC 100 ms
53,952 KB
testcase_17 AC 94 ms
50,744 KB
testcase_18 AC 103 ms
55,844 KB
testcase_19 AC 14 ms
6,944 KB
testcase_20 AC 16 ms
6,940 KB
testcase_21 AC 16 ms
6,944 KB
testcase_22 AC 18 ms
6,940 KB
testcase_23 AC 17 ms
6,944 KB
testcase_24 AC 17 ms
6,944 KB
testcase_25 AC 16 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #define _GLIBCXX_DEBUG
#include <bits/stdc++.h>
// clang-format off
std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;}
std::ostream&operator<<(std::ostream&os,const __int128_t &u){if(!u)os<<"0";__int128_t tmp=u<0?(os<<"-",-u):u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
std::ostream&operator<<(std::ostream&os,const __uint128_t &u){if(!u)os<<"0";__uint128_t tmp=u;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;}
#define checkpoint() (void(0))
#define debug(...) (void(0))
#define debugArray(x,n) (void(0))
#define debugMatrix(x,h,w) (void(0))
// clang-format on
#include <type_traits>
#define _LR(name, IT, CT) \
 template <class T> struct name { \
  using Iterator= typename std::vector<T>::IT; \
  Iterator bg, ed; \
  Iterator begin() const { return bg; } \
  Iterator end() const { return ed; } \
  size_t size() const { return std::distance(bg, ed); } \
  CT &operator[](int i) const { return bg[i]; } \
 }
_LR(ListRange, iterator, T);
_LR(ConstListRange, const_iterator, const T);
#undef _LR
template <class T> struct CSRArray {
 std::vector<T> dat;
 std::vector<int> p;
 size_t size() const { return p.size() - 1; }
 ListRange<T> operator[](int i) { return {dat.begin() + p[i], dat.begin() + p[i + 1]}; }
 ConstListRange<T> operator[](int i) const { return {dat.cbegin() + p[i], dat.cbegin() + p[i + 1]}; }
};
template <template <class> class F, class T> std::enable_if_t<std::disjunction_v<std::is_same<F<T>, ListRange<T>>, std::is_same<F<T>, ConstListRange<T>>, std::is_same<F<T>, CSRArray<T>>>, std::ostream &> operator<<(std::ostream &os, const F<T> &r) {
 os << '[';
 for (int _= 0, __= r.size(); _ < __; ++_) os << (_ ? ", " : "") << r[_];
 return os << ']';
}
struct Edge: std::pair<int, int> {
 using std::pair<int, int>::pair;
 Edge &operator--() { return --first, --second, *this; }
 int to(int v) const { return first ^ second ^ v; }
 friend std::istream &operator>>(std::istream &is, Edge &e) { return is >> e.first >> e.second, is; }
};
struct Graph: std::vector<Edge> {
 size_t n;
 Graph(size_t n= 0, size_t m= 0): vector(m), n(n) {}
 size_t vertex_size() const { return n; }
 size_t edge_size() const { return size(); }
 size_t add_vertex() { return n++; }
 size_t add_edge(int s, int d) { return emplace_back(s, d), size() - 1; }
 size_t add_edge(Edge e) { return emplace_back(e), size() - 1; }
#define _ADJ_FOR(a, b) \
 for (auto [u, v]: *this) a; \
 for (size_t i= 0; i < n; ++i) p[i + 1]+= p[i]; \
 for (int i= size(); i--;) { \
  auto [u, v]= (*this)[i]; \
  b; \
 }
#define _ADJ(a, b) \
 vector<int> p(n + 1), c(size() << !dir); \
 if (!dir) { \
  _ADJ_FOR((++p[u], ++p[v]), (c[--p[u]]= a, c[--p[v]]= b)) \
 } else if (dir > 0) { \
  _ADJ_FOR(++p[u], c[--p[u]]= a) \
 } else { \
  _ADJ_FOR(++p[v], c[--p[v]]= b) \
 } \
 return {c, p}
 CSRArray<int> adjacency_vertex(int dir) const { _ADJ(v, u); }
 CSRArray<int> adjacency_edge(int dir) const { _ADJ(i, i); }
#undef _ADJ
#undef _ADJ_FOR
};
class StronglyConnectedComponents {
 std::vector<int> m, q, b;
public:
 StronglyConnectedComponents(const Graph &g) {
  const int n= g.vertex_size();
  m.assign(n, -2), b.resize(n);
  {
   auto adj= g.adjacency_vertex(1);
   std::vector<int> c(adj.p.begin(), adj.p.begin() + n);
   for (int s= 0, k= n, p; s < n; ++s)
    if (m[s] == -2)
     for (m[p= s]= -1; p >= 0;) {
      if (c[p] == adj.p[p + 1]) b[--k]= p, p= m[p];
      else if (int w= adj.dat[c[p]++]; m[w] == -2) m[w]= p, p= w;
     }
  }
  auto adj= g.adjacency_vertex(-1);
  std::vector<char> z(n);
  int k= 0, p= 0;
  q= {0};
  for (int s: b)
   if (!z[s]) {
    for (z[m[k++]= s]= 1; p < k; ++p)
     for (int u: adj[m[p]])
      if (!z[u]) z[m[k++]= u]= 1;
    q.push_back(k);
   }
  for (int i= q.size() - 1; i--;)
   while (k > q[i]) b[m[--k]]= i;
 }
 size_t size() const { return q.size() - 1; }
 ConstListRange<int> block(int k) const { return {m.cbegin() + q[k], m.cbegin() + q[k + 1]}; }
 int operator()(int i) const { return b[i]; }
 Graph dag(const Graph &g) const {
  Graph ret(size());
  for (auto [s, d]: g)
   if (b[s] != b[d]) ret.add_edge(b[s], b[d]);
  return std::sort(ret.begin(), ret.end()), ret.erase(std::unique(ret.begin(), ret.end()), ret.end()), ret;
 }
};
class TwoSatisfiability {
 int n;
 Graph g;
public:
 TwoSatisfiability(int n): n(n), g(n + n) {}
 inline int neg(int x) const { return x >= n ? x - n : x + n; }
 void add_if(int u, int v) { g.add_edge(u, v), g.add_edge(neg(v), neg(u)); }  // u -> v <=> !v -> !u
 void add_or(int u, int v) { add_if(neg(u), v); }                             // u or v <=> !u -> v
 void add_nand(int u, int v) { add_if(u, neg(v)); }                           // u nand v <=> u -> !v
 void set_true(int u) { g.add_edge(neg(u), u); }                              // u <=> !u -> u
 void set_false(int u) { g.add_edge(u, neg(u)); }                             // !u <=> u -> !u
 std::vector<bool> solve() {
  StronglyConnectedComponents scc(g);
  std::vector<bool> ret(n);
  for (int i= 0, l, r; i<n; ret[i++]= l> r)
   if (l= scc(i), r= scc(neg(i)); l == r) return {};  // no solution
  return ret;
 }
};
using namespace std;
signed main() {
 cin.tie(0);
 ios::sync_with_stdio(0);
 int N, M;
 cin >> N >> M;
 int L[N], R[N];
 for (int i= 0; i < N; ++i) cin >> L[i] >> R[i];
 TwoSatisfiability sat(N);
 for (int i= N; i--;)
  for (int j= i; j--;) {
   if (!(R[i] < L[j] || R[j] < L[i])) sat.add_nand(i, j), sat.add_nand(sat.neg(i), sat.neg(j));
   if (!(R[i] < M - 1 - R[j] || M - 1 - L[j] < L[i])) sat.add_nand(sat.neg(i), j), sat.add_nand(i, sat.neg(j));
  }
 cout << (sat.solve().empty() ? "NO" : "YES") << '\n';
 return 0;
}
0