結果
問題 | No.125 悪の花弁 |
ユーザー | AC2K |
提出日時 | 2024-09-03 22:43:24 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 103 ms / 5,000 ms |
コード長 | 15,102 bytes |
コンパイル時間 | 3,346 ms |
コンパイル使用メモリ | 256,512 KB |
実行使用メモリ | 27,292 KB |
最終ジャッジ日時 | 2024-09-03 22:43:28 |
合計ジャッジ時間 | 4,560 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 53 ms
24,740 KB |
testcase_01 | AC | 73 ms
24,892 KB |
testcase_02 | AC | 86 ms
27,292 KB |
testcase_03 | AC | 103 ms
27,248 KB |
testcase_04 | AC | 59 ms
26,896 KB |
testcase_05 | AC | 59 ms
26,868 KB |
ソースコード
#line 1 "Library/src/debug.hpp" #ifdef ONLINE_JUDGE #define debug(x) void(0) #else #define _GLIBCXX_DEBUG #define debug(x) std::cerr << __LINE__ << " : " << #x << " = " << (x) << std::endl #endif /** * @brief Debugger */ #line 2 "Library/src/math/combination.hpp" #include <algorithm> #include <cassert> using namespace std; namespace kyopro { template <typename mint, int sz> class combination { const int M; mint fac[sz + 1], ifac[sz + 1]; public: combination() : M(std::min<int>(mint::mod(), sz)) { assert(mint::mod()); fac[0] = mint(1), ifac[0] = mint(1), fac[1] = mint(1), ifac[1] = mint(1); for (int i = 2; i <= M; ++i) { fac[i] = fac[i - 1] * i; } ifac[M - 1] = mint(1) / fac[M - 1]; for (int i = M - 2; i > 1; --i) { ifac[i] = ifac[i + 1] * (i + 1); } } constexpr mint fact(int n) const { assert(0 <= n && n <= sz); return fac[n]; } constexpr mint ifact(int n) const { assert(0 <= n && n <= sz); return ifac[n]; } constexpr mint binom(int n, int r) const { assert(n >= r); return fact(n) * ifact(r) * ifact(n - r); } constexpr mint perm(int n, int r) const { assert(n >= r); return fact(n) * ifact(n - r); } }; }; // namespace kyopro /** * @brief Combination */ #line 2 "Library/src/math/divisor-multiple-transform.hpp" #include <vector> namespace kyopro { namespace internal { std::vector<int> enumerate_primes(int n) { std::vector<int> primes; { std::vector<bool> f(n + 1); for (int i = 2; i <= n; ++i) { if (f[i]) continue; primes.emplace_back(i); for (int j = 2 * i; j <= n; j += i) f[j] = 1; } } return primes; } }; // namespace internal namespace multiple { template <typename T> void zeta(std::vector<T>& f) { std::vector primes = internal::enumerate_primes(f.size()); for (auto p : primes) { for (int i = ((int)f.size() - 1) / p; i >= 1; --i) { f[i] += f[p * i]; } } return; } template <typename T> void mobius(std::vector<T>& f) { std::vector primes = internal::enumerate_primes(f.size()); for (auto p : primes) { for (int i = 1 / p; p * i < (int)f.size(); ++i) { f[i] -= f[p * i]; } } return; } }; // namespace multiple namespace divisor { template <typename T> void zeta(std::vector<T>& f) { std::vector primes = internal::enumerate_primes(f.size()); for (auto p : primes) { for (int i = 1; i * p < (int)f.size(); ++i) { f[i * p] += f[i]; } } }; template <typename T> void mobius(std::vector<T>& f) { std::vector primes = internal::enumerate_primes(f.size()); for (auto p : primes) { for (int i = (int)(f.size() - 1) / p * p; i >= 1; i -= p) { f[i] -= f[i / p]; } } }; }; // namespace divisor }; // namespace kyopro /** * @brief Divisor・Multiple Transform * @docs docs/math/divisor-multiple-transform.md */ #line 3 "Library/src/math/static_modint.hpp" #include <cstdint> #include <iostream> #line 3 "Library/src/internal/type_traits.hpp" #include <limits> #include <numeric> #include <typeinfo> #line 7 "Library/src/internal/type_traits.hpp" namespace kyopro { namespace internal { template <typename... Args> struct first_enabled {}; template <typename T, typename... Args> struct first_enabled<std::enable_if<true, T>, Args...> { using type = T; }; template <typename T, typename... Args> struct first_enabled<std::enable_if<false, T>, Args...> : first_enabled<Args...> {}; template <typename T, typename... Args> struct first_enabled<T, Args...> { using type = T; }; template <typename... Args> using first_enabled_t = typename first_enabled<Args...>::type; template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct int_least { using type = first_enabled_t<std::enable_if<dgt <= 8, std::int8_t>, std::enable_if<dgt <= 16, std::int16_t>, std::enable_if<dgt <= 32, std::int32_t>, std::enable_if<dgt <= 64, std::int64_t>, std::enable_if<dgt <= 128, __int128_t>>; }; template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct uint_least { using type = first_enabled_t<std::enable_if<dgt <= 8, std::uint8_t>, std::enable_if<dgt <= 16, std::uint16_t>, std::enable_if<dgt <= 32, std::uint32_t>, std::enable_if<dgt <= 64, std::uint64_t>, std::enable_if<dgt <= 128, __uint128_t>>; }; template <int dgt> using int_least_t = typename int_least<dgt>::type; template <int dgt> using uint_least_t = typename uint_least<dgt>::type; template <typename T> using double_size_uint_t = uint_least_t<2 * std::numeric_limits<T>::digits>; template <typename T> using double_size_int_t = int_least_t<2 * std::numeric_limits<T>::digits>; struct modint_base {}; template <typename T> using is_modint = std::is_base_of<modint_base, T>; template <typename T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; // is_integral template <typename T> using is_integral_t = std::enable_if_t<std::is_integral_v<T> || std::is_same_v<T, __int128_t> || std::is_same_v<T, __uint128_t>>; }; // namespace internal }; // namespace kyopro /** * @brief Type Traits * @see https://qiita.com/kazatsuyu/items/f8c3b304e7f8b35263d8 */ #line 3 "Library/src/math/gcd.hpp" #include <cmath> #include <tuple> namespace kyopro { template <typename T> constexpr inline T _gcd(T a, T b) noexcept { assert(a >= 0 && b >= 0); if (a == 0 || b == 0) return a + b; int d = std::min<T>(__builtin_ctzll(a), __builtin_ctzll(b)); a >>= __builtin_ctzll(a), b >>= __builtin_ctzll(b); while (a != b) { if (!a || !b) { return a + b; } if (a >= b) { a -= b; a >>= __builtin_ctzll(a); } else { b -= a; b >>= __builtin_ctzll(b); } } return a << d; } template <typename T> constexpr inline T ext_gcd(T a, T b, T& x, T& y) noexcept { x = 1, y = 0; T nx = 0, ny = 1; while (b) { T q = a / b; std::tie(a, b) = std::pair<T, T>{b, a % b}; std::tie(x, nx) = std::pair<T, T>{nx, x - nx * q}; std::tie(y, ny) = std::pair<T, T>{ny, y - ny * q}; } return a; } }; // namespace kyopro /** * @brief gcd */ #line 8 "Library/src/math/static_modint.hpp" namespace kyopro { template <int _mod, std::enable_if_t<_mod >= 0>* = nullptr> class modint : internal::modint_base { using mint = modint<_mod>; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; u32 v; constexpr u32 normalize(i64 v_) const noexcept { v_ %= _mod; if (v_ < 0) { v_ += _mod; } return v_; } public: static constexpr u32 mod() noexcept { return _mod; } constexpr modint() noexcept : v(0) {} constexpr modint(i64 v_) noexcept : v(normalize(v_)) {} static mint raw(u32 a) { mint m; m.v = a; return m; } constexpr u32 val() const noexcept { return v; } constexpr mint& operator+=(const mint& rhs) noexcept { v += rhs.val(); if (v >= _mod) { v -= _mod; } return (*this); } constexpr mint& operator-=(const mint& rhs) noexcept { v += _mod - rhs.val(); if (v >= _mod) { v -= _mod; } return (*this); } constexpr mint& operator*=(const mint& rhs) noexcept { v = (u64)v * rhs.val() % _mod; return (*this); } constexpr mint operator+(const mint& r) const noexcept { return mint(*this) += r; } constexpr mint operator-(const mint& r) const noexcept { return mint(*this) -= r; } constexpr mint operator*(const mint& r) const noexcept { return mint(*this) *= r; } constexpr mint& operator+=(i64 rhs) noexcept { (*this) += mint(rhs); return (*this); } constexpr mint& operator-=(i64 rhs) noexcept { (*this) -= mint(rhs); return (*this); } constexpr mint& operator*=(i64 rhs) noexcept { (*this) *= mint(rhs); return (*this); } constexpr friend mint operator+(i64 l, const mint& r) noexcept { return mint(l) += r; } constexpr friend mint operator-(i64 l, const mint& r) noexcept { return mint(l) -= r; } constexpr friend mint operator*(i64 l, const mint& r) noexcept { return mint(l) *= r; } constexpr mint operator+(i64 r) const noexcept { return mint(*this) += r; } constexpr mint operator-(i64 r) const noexcept { return mint(*this) -= r; } constexpr mint operator*(i64 r) const noexcept { return mint(*this) *= r; } constexpr mint& operator=(i64 r) noexcept { return (*this) = mint(r); } constexpr bool operator==(const mint& r) const noexcept { return (*this).val() == r.val(); } template <typename T, internal::is_integral_t<T>* = nullptr> constexpr mint pow(T e) const noexcept { mint ans(1), base(*this); while (e) { if (e & 1) { ans *= base; } base *= base; e >>= 1; } return ans; } constexpr mint inv() const noexcept { long long x, y; auto d = ext_gcd((long long)_mod, (long long)v, x, y); assert(d == 1); return mint(y); } constexpr mint& operator/=(const mint& r) noexcept { return (*this) *= r.inv(); } constexpr mint operator/(const mint& r) const noexcept { return mint(*this) *= r.inv(); } constexpr friend mint operator/(const mint& l, i64 r) noexcept { return mint(l) /= mint(r); } constexpr friend mint operator/(i64 l, const mint& r) noexcept { return mint(l) /= mint(r); } }; }; // namespace kyopro /** * @brief static modint */ #line 2 "Library/src/stream.hpp" #include <ctype.h> #include <stdio.h> #include <string> #line 6 "Library/src/stream.hpp" namespace kyopro { inline void single_read(char& c) { c = getchar_unlocked(); while (isspace(c)) c = getchar_unlocked(); } template <typename T, internal::is_integral_t<T>* = nullptr> inline void single_read(T& a) { a = 0; bool is_negative = false; char c = getchar_unlocked(); while (isspace(c)) { c = getchar_unlocked(); } if (c == '-') is_negative = true, c = getchar_unlocked(); while (isdigit(c)) { a = 10 * a + (c - '0'); c = getchar_unlocked(); } if (is_negative) a *= -1; } template <typename T, internal::is_modint_t<T>* = nullptr> inline void single_read(T& a) { long long x; single_read(x); a = T(x); } inline void single_read(std::string& str) noexcept { char c = getchar_unlocked(); while (isspace(c)) c = getchar_unlocked(); while (!isspace(c)) { str += c; c = getchar_unlocked(); } } template<typename T> inline void read(T& x) noexcept {single_read(x);} template <typename Head, typename... Tail> inline void read(Head& head, Tail&... tail) noexcept { single_read(head), read(tail...); } inline void single_write(char c) noexcept { putchar_unlocked(c); } template <typename T, internal::is_integral_t<T>* = nullptr> inline void single_write(T a) noexcept { if (!a) { putchar_unlocked('0'); return; } if constexpr (std::is_signed_v<T>) { if (a < 0) putchar_unlocked('-'), a *= -1; } constexpr int d = std::numeric_limits<T>::digits10; char s[d + 1]; int now = d + 1; while (a) { s[--now] = (char)'0' + a % 10; a /= 10; } while (now <= d) putchar_unlocked(s[now++]); } template <typename T, internal::is_modint_t<T>* = nullptr> inline void single_write(T a) noexcept { single_write(a.val()); } inline void single_write(const std::string& str) noexcept { for (auto c : str) { putchar_unlocked(c); } } template <typename T> inline void write(T x) noexcept { single_write(x); } template <typename Head, typename... Tail> inline void write(Head head, Tail... tail) noexcept { single_write(head); putchar_unlocked(' '); write(tail...); } template <typename... Args> inline void put(Args... x) noexcept { write(x...); putchar_unlocked('\n'); } }; // namespace kyopro /** * @brief Fast IO(高速入出力) */ #line 2 "Library/src/template.hpp" #include <bits/stdc++.h> #define rep(i, n) for (int i = 0; i < (n); i++) #define all(x) std::begin(x), std::end(x) #define popcount(x) __builtin_popcountll(x) using i128 = __int128_t; using ll = long long; using ld = long double; using graph = std::vector<std::vector<int>>; using P = std::pair<int, int>; constexpr int inf = std::numeric_limits<int>::max() / 2; constexpr ll infl = std::numeric_limits<ll>::max() / 2; const long double pi = acosl(-1); constexpr int dx[] = {1, 0, -1, 0, 1, -1, -1, 1, 0}; constexpr int dy[] = {0, 1, 0, -1, 1, 1, -1, -1, 0}; template <typename T1, typename T2> constexpr inline bool chmax(T1& a, T2 b) { return a < b && (a = b, true); } template <typename T1, typename T2> constexpr inline bool chmin(T1& a, T2 b) { return a > b && (a = b, true); } /** * @brief Template */ #line 7 "a.cpp" using namespace std; using namespace kyopro; using mint = modint<(int)1e9 + 7>; combination<mint, (int)2e6> com; int main() { int n; read(n); vector c(n, 0); rep(i, n) read(c[i]); int cs = accumulate(all(c), 0); debug(cs); vector<mint> f(cs + 1); // xを周期に持つような並べ方 for (int l = 1; l <= cs; ++l) { if (cs % l != 0) continue; debug(l); debug(cs / l); f[l] = com.fact(l); rep(i, n) { if (c[i] % (cs / l) != 0) { f[l] = 0; break; } f[l] /= com.fact(c[i] / (cs / l)); } debug(f[l].val()); } // rep(i, (int)f.size()) cout << f[i].val() << " \n"[i == f.size() - 1]; // 最小周期がλ→kλも周期のひとつ // f(x) := xを周期にもつような塗り方 // g(x) := 最小周期がxとなるような塗り方 // → f(x) := Σ g(y) (x = ky i.e. y divides x) divisor::mobius(f); // 最小周期に直す // rep(i, (int)f.size()) cout << f[i].val() << " \n"[i == (int)f.size() - 1]; vector answer(cs, mint()); for (int i = 1; i <= cs; ++i) { if (cs % i != 0) continue; for (int j = 0; j < cs; j += i) { answer[j] += f[i]; } } // rep(i, (int)answer.size()) { // cout << answer[i].val() << " \n"[i == (int)answer.size() - 1]; // } put(accumulate(all(answer), mint()) / cs); }