結果
問題 | No.2876 Infection |
ユーザー |
![]() |
提出日時 | 2024-09-06 22:18:12 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 488 ms / 2,000 ms |
コード長 | 5,794 bytes |
コンパイル時間 | 187 ms |
コンパイル使用メモリ | 82,144 KB |
実行使用メモリ | 102,016 KB |
最終ジャッジ日時 | 2024-09-06 22:18:34 |
合計ジャッジ時間 | 7,951 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 27 |
ソースコード
mod = 998244353NTT_friend = [120586241,167772161,469762049,754974721,880803841,924844033,943718401,998244353,1045430273,1051721729,1053818881]NTT_dict = {}for i in range(len(NTT_friend)):NTT_dict[NTT_friend[i]] = iNTT_info = [[20,74066978],[25,17],[26,30],[24,362],[23,211],[21,44009197],[22,663003469],[23,31],[20,363],[20,330],[20,2789]]def popcount(n):c=(n&0x5555555555555555)+((n>>1)&0x5555555555555555)c=(c&0x3333333333333333)+((c>>2)&0x3333333333333333)c=(c&0x0f0f0f0f0f0f0f0f)+((c>>4)&0x0f0f0f0f0f0f0f0f)c=(c&0x00ff00ff00ff00ff)+((c>>8)&0x00ff00ff00ff00ff)c=(c&0x0000ffff0000ffff)+((c>>16)&0x0000ffff0000ffff)c=(c&0x00000000ffffffff)+((c>>32)&0x00000000ffffffff)return cdef topbit(n):h = n.bit_length()h -= 1return hdef prepared_fft(mod = 998244353):rank2 = NTT_info[NTT_dict[mod]][0]root,iroot = [0] * 30,[0] * 30rate2,irate2= [0] * 30,[0] * 30rate3,irate3= [0] * 30,[0] * 30root[rank2] = NTT_info[NTT_dict[mod]][1]iroot[rank2] = pow(root[rank2],mod - 2,mod)for i in range(rank2-1,-1,-1):root[i] = root[i+1] * root[i+1] % modiroot[i] = iroot[i+1] * iroot[i+1] % modprod,iprod = 1,1for i in range(rank2-1):rate2[i] = root[i + 2] * prod % modirate2[i] = iroot[i + 2] * iprod % modprod = prod * iroot[i + 2] % modiprod = iprod * root[i + 2] % modprod,iprod = 1,1for i in range(rank2-2):rate3[i] = root[i + 3] * prod % modirate3[i] = iroot[i + 3] * iprod % modprod = prod * iroot[i + 3] % modiprod = iprod * root[i + 3] % modreturn root,iroot,rate2,irate2,rate3,irate3root,iroot,rate2,irate2,rate3,irate3 = prepared_fft()def ntt(a):n = len(a)h = topbit(n)assert (n == 1 << h)le = 0while le < h:if h - le == 1:p = 1 << (h - le - 1)rot = 1for s in range(1 << le):offset = s << (h - le)for i in range(p):l = a[i + offset]r = a[i + offset + p] * rot % moda[i + offset] = (l + r) % moda[i + offset + p] = (l - r) % modrot = rot * rate2[topbit(~s & -~s)] % modle += 1else:p = 1 << (h - le - 2)rot,imag = 1,root[2]for s in range(1 << le):rot2 = rot * rot % modrot3 = rot2 * rot % modoffset = s << (h - le)for i in range(p):a0 = a[i + offset]a1 = a[i + offset + p] * rota2 = a[i + offset + p * 2] * rot2a3 = a[i + offset + p * 3] * rot3a1na3imag = (a1 - a3) % mod * imaga[i + offset] = (a0 + a2 + a1 + a3) % moda[i + offset + p] = (a0 + a2 - a1 - a3) % moda[i + offset + p * 2] = (a0 - a2 + a1na3imag) % moda[i + offset + p * 3] = (a0 - a2 - a1na3imag) % modrot = rot * rate3[topbit(~s & -~s)] % modle += 2def intt(a):n = len(a)h = topbit(n)assert (n == 1 << h)coef = pow(n,mod - 2,mod)for i in range(n):a[i] = a[i] * coef % modle = hwhile le:if le == 1:p = 1 << (h - le)irot = 1for s in range(1 << (le - 1)):offset = s << (h - le + 1)for i in range(p):l = a[i + offset]r = a[i + offset + p]a[i + offset] = (l + r) % moda[i + offset + p] = (l - r) * irot % modirot = irot * irate2[topbit(~s & -~s)] % modle -= 1else:p = 1 << (h - le)irot,iimag = 1,iroot[2]for s in range(1 << (le - 2)):irot2 = irot * irot % modirot3 = irot2 * irot % modoffset = s << (h - le + 2)for i in range(p):a0 = a[i + offset]a1 = a[i + offset + p]a2 = a[i + offset + p * 2]a3 = a[i + offset + p * 3]a2na3iimag = (a2 - a3) * iimag % moda[i + offset] = (a0 + a1 + a2 + a3) % moda[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % moda[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % moda[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % modirot *= irate3[topbit(~s & -~s)]irot %= modle -= 2def convolute_naive(a,b):res = [0] * (len(a) + len(b) - 1)for i in range(len(a)):for j in range(len(b)):res[i+j] = (res[i+j] + a[i] * b[j] % mod) % modreturn resdef convolute(a,b):s = a[:]t = b[:]n = len(s)m = len(t)if min(n,m) <= 60:return convolute_naive(s,t)le = 1while le < n + m - 1:le *= 2s += [0] * (le - n)t += [0] * (le - m)ntt(s)ntt(t)for i in range(le):s[i] = s[i] * t[i] % modintt(s)s = s[:n + m - 1]return sn = 10**6inv = [1 for j in range(n+1)]for a in range(2,n+1):# ax + py = 1 <=> rx + p(-x-qy) = -q => x = -(inv[r]) * (p//a) (r = p % a)res = (mod - inv[mod%a]) * (mod // a)inv[a] = res % modfact = [1 for i in range(n+1)]for i in range(1,n+1):fact[i] = fact[i-1]*i % modfact_inv = [1 for i in range(n+1)]fact_inv[-1] = pow(fact[-1],mod-2,mod)for i in range(n,0,-1):fact_inv[i-1] = fact_inv[i]*i % moddef binom(n,r):if n < r or n < 0 or r < 0:return 0res = fact_inv[n-r] * fact_inv[r] % modres *= fact[n]res %= modreturn resN,x = map(int,input().split())if x == 0:print(1)exit()if x == 100:print(N)exit()p,q = x * pow(100,-1,mod) % mod,(100 - x) * pow(100,-1,mod) % modQ = [pow(q,i,mod) for i in range(N + 1)]r = p * pow(q,-1,mod)f = [0 for i in range(N + 1)]f[1] = 1g = [pow(r,i,mod) * fact_inv[i] % mod for i in range(N + 1)]ans = 0for n in range(1,N + 1):for i in range(N + 1):f[i] = f[i] * Q[N - i] % modf = convolute(f,g)[:(N + 1)]for i in range(n):f[i] = 0ans += (fact[N - 1] * fact_inv[N - n] % mod) * (n * f[n] % mod) % modans %= modf[n] = 0print(ans % mod)