結果
問題 |
No.2881 Mod 2^N
|
ユーザー |
|
提出日時 | 2024-09-06 22:33:04 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 39 ms / 2,000 ms |
コード長 | 639 bytes |
コンパイル時間 | 936 ms |
コンパイル使用メモリ | 82,516 KB |
実行使用メモリ | 53,788 KB |
最終ジャッジ日時 | 2024-09-06 22:33:08 |
合計ジャッジ時間 | 3,431 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 30 |
ソースコード
import sys # 入力を受け取る N, X, Y = map(int, input().split()) # X == Y の時は何もしなくてよい if X == Y: print(0) sys.exit(0) # X != Y でかつYが偶数の時、操作後のXは常に奇数なので # X == Y にすることは絶対にできない if Y % 2 == 0: print(-1) sys.exit(0) res = [] # X*(2^N)+1 mod 2^N を行うことでXを事実上消去 res.append(N) # Yのどのビットが立っているのかを計算 bit = [] for i in range(N): if ((Y >> i) & 1) == 1: bit.append(i) while len(bit) > 1: res.append(bit[-1] - bit[-2]) bit.pop() print(len(res)) print(*res)