結果
問題 | No.2876 Infection |
ユーザー |
|
提出日時 | 2024-09-06 22:37:51 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 12,069 bytes |
コンパイル時間 | 2,422 ms |
コンパイル使用メモリ | 212,088 KB |
実行使用メモリ | 14,112 KB |
最終ジャッジ日時 | 2024-09-06 22:37:58 |
合計ジャッジ時間 | 5,910 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 2 TLE * 1 -- * 24 |
ソースコード
#include <bits/stdc++.h>using namespace std;typedef long long ll;typedef pair<ll, ll> pll;typedef pair<int, int> pii;typedef pair<double, double> pdd;typedef vector<int> vi;typedef vector<ll> vll;typedef vector<double> vd;typedef vector<string> vs;typedef vector<vi> vvi;typedef vector<vvi> vvvi;typedef vector<vll> vvll;typedef vector<vvll> vvvll;typedef vector<pii> vpii;typedef vector<vpii> vvpii;typedef vector<pll> vpll;typedef vector<vpll> vvpll;typedef vector<pdd> vpdd;typedef vector<vd> vvd;#define yn(ans) printf("%s\n", (ans)?"Yes":"No");#define YN(ans) printf("%s\n", (ans)?"YES":"NO");template<class T> bool chmax(T &a, T b) {if (a >= b) return false;a = b; return true;}template<class T> bool chmin(T &a, T b) {if (a <= b) return false;a = b; return true;}#define FOR(i, s, e, t) for ((i) = (s); (i) < (e); (i) += (t))#define REP(i, e) for (int i = 0; i < (e); ++i)#define REP1(i, s, e) for (int i = (s); i < (e); ++i)#define RREP(i, e) for (int i = (e); i >= 0; --i)#define RREP1(i, e, s) for (int i = (e); i >= (s); --i)#define all(v) v.begin(), v.end()#define pb push_back#define qb pop_back#define pf push_front#define qf pop_front#define maxe max_element#define mine min_elementll inf = 1e18;#define DEBUG printf("%d\n", __LINE__); fflush(stdout);template<class T> void print(vector<T> &v, bool withSize = false) {if (withSize) cout << v.size() << endl;REP(i, v.size()) cout << v[i] << " ";cout << endl;}mt19937_64 rng((unsigned int) chrono::steady_clock::now().time_since_epoch().count());int __FAST_IO__ = []() {std::ios::sync_with_stdio(0);std::cin.tie(0);std::cout.tie(0);return 0;}();// Mint & Combinatoricstemplate <typename T>T inverse(T a, T m) {T u = 0, v = 1;while (a != 0) {T t = m / a;m -= t * a; swap(a, m);u -= t * v; swap(u, v);}return u;}template <typename T>class Modular {public:using Type = typename decay<decltype(T::value)>::type;constexpr Modular() : value() {}template <typename U>Modular(const U& x) {value = normalize(x);}template <typename U>static Type normalize(const U& x) {Type v;if (-mod() <= x && x < mod()) v = static_cast<Type>(x);else v = static_cast<Type>(x % mod());if (v < 0) v += mod();return v;}const Type& operator()() const { return value; }template <typename U>explicit operator U() const { return static_cast<U>(value); }constexpr static Type mod() { return T::value; }Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }Modular& operator++() { return *this += 1; }Modular& operator--() { return *this -= 1; }Modular operator++(int) { Modular result(*this); *this += 1; return result; }Modular operator--(int) { Modular result(*this); *this -= 1; return result; }Modular operator-() const { return Modular(-value); }template <typename U = T>typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {#ifdef _WIN32uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;asm("divl %4; \n\t": "=a" (d), "=d" (m): "d" (xh), "a" (xl), "r" (mod()));value = m;#elsevalue = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));#endifreturn *this;}template <typename U = T>typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type& operator*=(const Modular& rhs) {long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod());value = normalize(value * rhs.value - q * mod());return *this;}template <typename U = T>typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {value = normalize(value * rhs.value);return *this;}Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }friend const Type& abs(const Modular& x) { return x.value; }template <typename U>friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);template <typename U>friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);template <typename V, typename U>friend V& operator>>(V& stream, Modular<U>& number);private:Type value;};template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }template<typename T, typename U>Modular<T> power(const Modular<T>& a, const U& b) {assert(b >= 0);Modular<T> x = a, res = 1;U p = b;while (p > 0) {if (p & 1) res *= x;x *= x;p >>= 1;}return res;}template <typename T>bool IsZero(const Modular<T>& number) {return number() == 0;}template <typename T>string to_string(const Modular<T>& number) {return to_string(number());}// U == std::ostream? but done this way because of fastoutputtemplate <typename U, typename T>U& operator<<(U& stream, const Modular<T>& number) {return stream << number();}// U == std::istream? but done this way because of fastinputtemplate <typename U, typename T>U& operator>>(U& stream, Modular<T>& number) {typename common_type<typename Modular<T>::Type, long long>::type x;stream >> x;number.value = Modular<T>::normalize(x);return stream;}struct MOD {static int value;};int MOD::value = 998244353;using Mint = Modular<MOD>;typedef vector<Mint> vm;typedef vector<vm> vvm;typedef vector<vvm> vvvm;vector<Mint> fac, ifac;void initFac(int N) {fac.resize(N + 1);ifac.resize(N + 1);fac[0] = ifac[0] = 1;REP1(i, 1, N + 1) {fac[i] = fac[i - 1] * i;}ifac[N] = 1 / fac[N];RREP1(i, N - 1, 1) {ifac[i] = (i + 1) * ifac[i + 1];}}Mint C(int m, int n) {if (m < n || n < 0) return 0;return fac[m] * ifac[n] * ifac[m - n];}Mint P(int m, int n) {if (m < n || n < 0) return 0;return fac[m] * ifac[m - n];}template< typename Mint >struct NumberTheoreticTransformFriendlyModInt {vector< Mint > dw, idw;int max_base;Mint root;NumberTheoreticTransformFriendlyModInt() {const unsigned mod = Mint::mod();assert(mod >= 3 && mod % 2 == 1);auto tmp = mod - 1;max_base = 0;while(tmp % 2 == 0) tmp >>= 1, max_base++;root = 2;while(power(root, (mod - 1) >> 1) == 1) root += 1;assert(power(root, mod - 1) == 1);dw.resize(max_base);idw.resize(max_base);for(int i = 0; i < max_base; i++) {dw[i] = -power(root, (mod - 1) >> (i + 2));idw[i] = Mint(1) / dw[i];}}void ntt(vector< Mint > &a) {const int n = (int) a.size();assert((n & (n - 1)) == 0);assert(__builtin_ctz(n) <= max_base);for(int m = n; m >>= 1;) {Mint w = 1;for(int s = 0, k = 0; s < n; s += 2 * m) {for(int i = s, j = s + m; i < s + m; ++i, ++j) {auto x = a[i], y = a[j] * w;a[i] = x + y, a[j] = x - y;}w *= dw[__builtin_ctz(++k)];}}}void intt(vector< Mint > &a, bool f = true) {const int n = (int) a.size();assert((n & (n - 1)) == 0);assert(__builtin_ctz(n) <= max_base);for(int m = 1; m < n; m *= 2) {Mint w = 1;for(int s = 0, k = 0; s < n; s += 2 * m) {for(int i = s, j = s + m; i < s + m; ++i, ++j) {auto x = a[i], y = a[j];a[i] = x + y, a[j] = (x - y) * w;}w *= idw[__builtin_ctz(++k)];}}if(f) {Mint inv_sz = Mint(1) / n;for(int i = 0; i < n; i++) a[i] *= inv_sz;}}vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {int need = a.size() + b.size() - 1;int nbase = 1;while((1 << nbase) < need) nbase++;int sz = 1 << nbase;a.resize(sz, 0);b.resize(sz, 0);ntt(a);ntt(b);Mint inv_sz = Mint(1) / sz;for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;intt(a, false);a.resize(need);return a;}void sq(vector<Mint> &a, vector<Mint> &b, bool mult) {int need = a.size() + b.size() - 1;int nbase = 1;while((1 << nbase) < need) nbase++;int sz = 1 << nbase;b.resize(sz, 0);ntt(b);Mint inv_sz = Mint(1) / sz;if (mult) {a.resize(sz, 0);ntt(a);for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;intt(a, false);a.resize(need);}for (int i = 0; i < sz; i++) b[i] *= b[i] * inv_sz;intt(b, false);b.resize(need);}void pow(vector<Mint> &a, vector<Mint> &b, int p) {int len = a.size();while (p) {sq(a, b, p & 1);a.resize(len);b.resize(len);p >>= 1;}}};NumberTheoreticTransformFriendlyModInt<Mint> ntt;#define TESTS int t; cin >> t; while (t--)#define TESTint main() {int N, X;cin >> N >> X;initFac(N);Mint p = Mint(X) / 100;vm pw(N + 1, 1), qw(N + 1, 1);REP(i, N) pw[i + 1] = pw[i] * p, qw[i + 1] = qw[i] * (1 - p);vvm dp(N + 1, vm(N + 1, 0));dp[1][N - 1] = 1;RREP(tot, N) {REP1(i, 1, tot + 1) {int j = tot - i;REP(k, j + 1) {dp[i - 1 + k][j - k] += dp[i][j] * C(j, k) * pw[k] * qw[j - k];}}}Mint ans = 0;REP(i, N + 1) {ans += dp[0][i] * (N - i);}printf("%d\n", ans);return 0;}