結果

問題 No.2876 Infection
ユーザー Aging1986Aging1986
提出日時 2024-09-06 22:37:51
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 12,069 bytes
コンパイル時間 2,422 ms
コンパイル使用メモリ 212,088 KB
実行使用メモリ 14,112 KB
最終ジャッジ日時 2024-09-06 22:37:58
合計ジャッジ時間 5,910 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 2 TLE * 1 -- * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<double> vd;
typedef vector<string> vs;
typedef vector<vi> vvi;
typedef vector<vvi> vvvi;
typedef vector<vll> vvll;
typedef vector<vvll> vvvll;
typedef vector<pii> vpii;
typedef vector<vpii> vvpii;
typedef vector<pll> vpll;
typedef vector<vpll> vvpll;
typedef vector<pdd> vpdd;
typedef vector<vd> vvd;
#define yn(ans) printf("%s\n", (ans)?"Yes":"No");
#define YN(ans) printf("%s\n", (ans)?"YES":"NO");
template<class T> bool chmax(T &a, T b) {
if (a >= b) return false;
a = b; return true;
}
template<class T> bool chmin(T &a, T b) {
if (a <= b) return false;
a = b; return true;
}
#define FOR(i, s, e, t) for ((i) = (s); (i) < (e); (i) += (t))
#define REP(i, e) for (int i = 0; i < (e); ++i)
#define REP1(i, s, e) for (int i = (s); i < (e); ++i)
#define RREP(i, e) for (int i = (e); i >= 0; --i)
#define RREP1(i, e, s) for (int i = (e); i >= (s); --i)
#define all(v) v.begin(), v.end()
#define pb push_back
#define qb pop_back
#define pf push_front
#define qf pop_front
#define maxe max_element
#define mine min_element
ll inf = 1e18;
#define DEBUG printf("%d\n", __LINE__); fflush(stdout);
template<class T> void print(vector<T> &v, bool withSize = false) {
if (withSize) cout << v.size() << endl;
REP(i, v.size()) cout << v[i] << " ";
cout << endl;
}
mt19937_64 rng((unsigned int) chrono::steady_clock::now().time_since_epoch().count());
int __FAST_IO__ = []() {
std::ios::sync_with_stdio(0);
std::cin.tie(0);
std::cout.tie(0);
return 0;
}();
// Mint & Combinatorics
template <typename T>
T inverse(T a, T m) {
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
return u;
}
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
return v;
}
const Type& operator()() const { return value; }
template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
Modular& operator++() { return *this += 1; }
Modular& operator--() { return *this -= 1; }
Modular operator++(int) { Modular result(*this); *this += 1; return result; }
Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
Modular operator-() const { return Modular(-value); }
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
#ifdef _WIN32
uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
asm(
"divl %4; \n\t"
: "=a" (d), "=d" (m)
: "d" (xh), "a" (xl), "r" (mod())
);
value = m;
#else
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
return *this;
}
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type& operator*=(const Modular& rhs) {
long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod());
value = normalize(value * rhs.value - q * mod());
return *this;
}
template <typename U = T>
typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(value * rhs.value);
return *this;
}
Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
friend const Type& abs(const Modular& x) { return x.value; }
template <typename U>
friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename U>
friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename V, typename U>
friend V& operator>>(V& stream, Modular<U>& number);
private:
Type value;
};
template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }
template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }
template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template<typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
assert(b >= 0);
Modular<T> x = a, res = 1;
U p = b;
while (p > 0) {
if (p & 1) res *= x;
x *= x;
p >>= 1;
}
return res;
}
template <typename T>
bool IsZero(const Modular<T>& number) {
return number() == 0;
}
template <typename T>
string to_string(const Modular<T>& number) {
return to_string(number());
}
// U == std::ostream? but done this way because of fastoutput
template <typename U, typename T>
U& operator<<(U& stream, const Modular<T>& number) {
return stream << number();
}
// U == std::istream? but done this way because of fastinput
template <typename U, typename T>
U& operator>>(U& stream, Modular<T>& number) {
typename common_type<typename Modular<T>::Type, long long>::type x;
stream >> x;
number.value = Modular<T>::normalize(x);
return stream;
}
struct MOD {
static int value;
};
int MOD::value = 998244353;
using Mint = Modular<MOD>;
typedef vector<Mint> vm;
typedef vector<vm> vvm;
typedef vector<vvm> vvvm;
vector<Mint> fac, ifac;
void initFac(int N) {
fac.resize(N + 1);
ifac.resize(N + 1);
fac[0] = ifac[0] = 1;
REP1(i, 1, N + 1) {
fac[i] = fac[i - 1] * i;
}
ifac[N] = 1 / fac[N];
RREP1(i, N - 1, 1) {
ifac[i] = (i + 1) * ifac[i + 1];
}
}
Mint C(int m, int n) {
if (m < n || n < 0) return 0;
return fac[m] * ifac[n] * ifac[m - n];
}
Mint P(int m, int n) {
if (m < n || n < 0) return 0;
return fac[m] * ifac[m - n];
}
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
vector< Mint > dw, idw;
int max_base;
Mint root;
NumberTheoreticTransformFriendlyModInt() {
const unsigned mod = Mint::mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while(power(root, (mod - 1) >> 1) == 1) root += 1;
assert(power(root, mod - 1) == 1);
dw.resize(max_base);
idw.resize(max_base);
for(int i = 0; i < max_base; i++) {
dw[i] = -power(root, (mod - 1) >> (i + 2));
idw[i] = Mint(1) / dw[i];
}
}
void ntt(vector< Mint > &a) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = n; m >>= 1;) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j] * w;
a[i] = x + y, a[j] = x - y;
}
w *= dw[__builtin_ctz(++k)];
}
}
}
void intt(vector< Mint > &a, bool f = true) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = 1; m < n; m *= 2) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j];
a[i] = x + y, a[j] = (x - y) * w;
}
w *= idw[__builtin_ctz(++k)];
}
}
if(f) {
Mint inv_sz = Mint(1) / n;
for(int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
void sq(vector<Mint> &a, vector<Mint> &b, bool mult) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
b.resize(sz, 0);
ntt(b);
Mint inv_sz = Mint(1) / sz;
if (mult) {
a.resize(sz, 0);
ntt(a);
for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
}
for (int i = 0; i < sz; i++) b[i] *= b[i] * inv_sz;
intt(b, false);
b.resize(need);
}
void pow(vector<Mint> &a, vector<Mint> &b, int p) {
int len = a.size();
while (p) {
sq(a, b, p & 1);
a.resize(len);
b.resize(len);
p >>= 1;
}
}
};
NumberTheoreticTransformFriendlyModInt<Mint> ntt;
#define TESTS int t; cin >> t; while (t--)
#define TEST
int main() {
int N, X;
cin >> N >> X;
initFac(N);
Mint p = Mint(X) / 100;
vm pw(N + 1, 1), qw(N + 1, 1);
REP(i, N) pw[i + 1] = pw[i] * p, qw[i + 1] = qw[i] * (1 - p);
vvm dp(N + 1, vm(N + 1, 0));
dp[1][N - 1] = 1;
RREP(tot, N) {
REP1(i, 1, tot + 1) {
int j = tot - i;
REP(k, j + 1) {
dp[i - 1 + k][j - k] += dp[i][j] * C(j, k) * pw[k] * qw[j - k];
}
}
}
Mint ans = 0;
REP(i, N + 1) {
ans += dp[0][i] * (N - i);
}
printf("%d\n", ans);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0