結果
問題 | No.2873 Kendall's Tau |
ユーザー | shobonvip |
提出日時 | 2024-09-06 23:08:34 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 5,933 bytes |
コンパイル時間 | 6,672 ms |
コンパイル使用メモリ | 335,636 KB |
実行使用メモリ | 29,776 KB |
最終ジャッジ日時 | 2024-09-06 23:09:12 |
合計ジャッジ時間 | 24,672 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | RE | - |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | RE | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | RE | - |
testcase_30 | RE | - |
testcase_31 | RE | - |
testcase_32 | RE | - |
ソースコード
#include<bits/stdc++.h> using namespace std; //* ATCODER #include<atcoder/all> using namespace atcoder; typedef modint998244353 mint; //*/ /* BOOST MULTIPRECISION #include<boost/multiprecision/cpp_int.hpp> using namespace boost::multiprecision; //*/ typedef long long ll; #define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++) #define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--) template <typename T> bool chmin(T &a, const T &b) { if (a <= b) return false; a = b; return true; } template <typename T> bool chmax(T &a, const T &b) { if (a >= b) return false; a = b; return true; } template <typename T> T max(vector<T> &a){ assert(!a.empty()); T ret = a[0]; for (int i=0; i<(int)a.size(); i++) chmax(ret, a[i]); return ret; } template <typename T> T min(vector<T> &a){ assert(!a.empty()); T ret = a[0]; for (int i=0; i<(int)a.size(); i++) chmin(ret, a[i]); return ret; } template <typename T> T sum(vector<T> &a){ T ret = 0; for (int i=0; i<(int)a.size(); i++) ret += a[i]; return ret; } //https://hitonanode.github.io/cplib-cpp/segmenttree/rangetree.hpp.html // CUT begin // 逆元を要求しない領域木 template <class S, S (*op)(S, S), S (*e)(), class Coordinate> class rangetree { int n; using Pt = std::pair<Coordinate, Coordinate>; std::vector<Pt> _pts; std::vector<std::vector<Pt>> _range2yxs; std::vector<atcoder::segtree<S, op, e>> segtrees; void _set(int v, Pt p, S val) { auto i = std::distance( _range2yxs[v].begin(), std::lower_bound(_range2yxs[v].begin(), _range2yxs[v].end(), Pt{p.second, p.first})); segtrees[v].set(i, val); } void _add(int v, Pt p, S val) { auto i = std::distance( _range2yxs[v].begin(), std::lower_bound(_range2yxs[v].begin(), _range2yxs[v].end(), Pt{p.second, p.first})); segtrees[v].set(i, op(segtrees[v].get(i), val)); } S _prod(int v, Coordinate yl, Coordinate yr) const { auto comp = [&](const Pt &l, const Pt &r) { return l.first < r.first; }; auto il = std::distance( _range2yxs[v].begin(), std::lower_bound(_range2yxs[v].begin(), _range2yxs[v].end(), Pt{yl, yl}, comp)); auto ir = std::distance( _range2yxs[v].begin(), std::lower_bound(_range2yxs[v].begin(), _range2yxs[v].end(), Pt{yr, yr}, comp)); return segtrees[v].prod(il, ir); } public: rangetree() = default; void add_point(Coordinate x, Coordinate y) noexcept { _pts.emplace_back(x, y); } void build() { std::sort(_pts.begin(), _pts.end()); _pts.erase(std::unique(_pts.begin(), _pts.end()), _pts.end()); n = _pts.size(); _range2yxs.resize(n * 2); for (int i = 0; i < n; i++) _range2yxs[n + i] = {{_pts[i].second, _pts[i].first}}; for (int i = n - 1; i > 0; i--) { auto &lch = _range2yxs[i * 2]; auto &rch = _range2yxs[i * 2 + 1]; std::merge( lch.begin(), lch.end(), rch.begin(), rch.end(), std::back_inserter(_range2yxs[i])); _range2yxs[i].erase( std::unique(_range2yxs[i].begin(), _range2yxs[i].end()), _range2yxs[i].end()); } for (const auto &v : _range2yxs) segtrees.emplace_back(v.size()); } void set(Coordinate x, Coordinate y, S val) { int i = std::distance(_pts.begin(), std::lower_bound(_pts.begin(), _pts.end(), Pt{x, y})); assert(i < n and _pts[i] == std::make_pair(x, y)); for (i += n; i; i >>= 1) _set(i, {x, y}, val); } void add(Coordinate x, Coordinate y, S val) { int i = std::distance(_pts.begin(), std::lower_bound(_pts.begin(), _pts.end(), Pt{x, y})); assert(i < n and _pts[i] == std::make_pair(x, y)); for (i += n; i; i >>= 1) _add(i, {x, y}, val); } S prod(Coordinate xl, Coordinate xr, Coordinate yl, Coordinate yr) const { auto comp = [](const Pt &l, const Pt &r) { return l.first < r.first; }; int l = n + std::distance(_pts.begin(), std::lower_bound(_pts.begin(), _pts.end(), Pt{xl, yr}, comp)); int r = n + std::distance(_pts.begin(), std::lower_bound(_pts.begin(), _pts.end(), Pt{xr, yr}, comp)); S ret = e(); while (l < r) { if (l & 1) ret = op(ret, _prod(l++, yl, yr)); if (r & 1) ret = op(ret, _prod(--r, yl, yr)); l >>= 1, r >>= 1; } return ret; } S get(Coordinate x, Coordinate y) const { return prod(x, x + 1, y, y + 1); } }; ll op(ll a, ll b){return a + b;} ll e(){return 0;} // defcomp template <typename T> vector<T> compress(vector<T> &X) { vector<T> vals = X; sort(vals.begin(), vals.end()); vals.erase(unique(vals.begin(), vals.end()), vals.end()); return vals; } // ----- // importbisect template <typename T> int bisect_left(vector<T> &X, T v){ return lower_bound(X.begin(), X.end(), v) - X.begin(); } template <typename T> int bisect_right(vector<T> &X, T v){ return upper_bound(X.begin(), X.end(), v) - X.begin(); } // ----- int main(){ int n; cin >> n; vector<int> x(n), y(n); map<int,ll> cntx; map<int,ll> cnty; rangetree<ll,op,e,int> rt; rep(i,0,n){ cin >> x[i] >> y[i]; cntx[x[i]]++; cnty[y[i]]++; } rt.build(); ll p=0,q=0,r=0,s=0; vector<int> fx = compress(x); vector<int> fy = compress(y); rep(i,0,n){ x[i]=bisect_left(fx,x[i]); y[i]=bisect_left(fx,y[i]); rt.add_point(x[i],y[i]); } r=n*(n-1)/2; s=n*(n-1)/2; for(auto[_,c]: cntx){ r-=c*(c-1)/2; } for(auto[_,c]: cnty){ s-=c*(c-1)/2; } const int INF=1e9; rep(i,0,n){ p+=rt.prod(x[i]+1,INF,y[i]+1,INF); p+=rt.prod(-INF,x[i],-INF,y[i]); q+=rt.prod(-INF,x[i],y[i]+1,INF); q+=rt.prod(x[i]+1,INF,-INF,y[i]); rt.set(x[i],y[i],1); } cout<<fixed<<setprecision(15); cout<<double(p-q)/sqrt(double(r)*double(s))<<'\n'; }