結果

問題 No.2933 Range ROT Query
ユーザー loop0919loop0919
提出日時 2024-09-07 12:04:45
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,002 ms / 3,000 ms
コード長 7,180 bytes
コンパイル時間 1,486 ms
コンパイル使用メモリ 82,456 KB
実行使用メモリ 115,164 KB
最終ジャッジ日時 2024-10-02 00:29:02
合計ジャッジ時間 63,797 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 43 ms
54,500 KB
testcase_01 AC 42 ms
54,576 KB
testcase_02 AC 42 ms
54,256 KB
testcase_03 AC 44 ms
54,928 KB
testcase_04 AC 47 ms
55,828 KB
testcase_05 AC 46 ms
56,016 KB
testcase_06 AC 52 ms
62,740 KB
testcase_07 AC 48 ms
56,728 KB
testcase_08 AC 43 ms
55,096 KB
testcase_09 AC 45 ms
56,584 KB
testcase_10 AC 52 ms
62,280 KB
testcase_11 AC 44 ms
55,036 KB
testcase_12 AC 1,684 ms
104,068 KB
testcase_13 AC 1,705 ms
105,616 KB
testcase_14 AC 1,712 ms
105,036 KB
testcase_15 AC 1,657 ms
105,124 KB
testcase_16 AC 1,771 ms
104,396 KB
testcase_17 AC 1,874 ms
108,116 KB
testcase_18 AC 2,002 ms
107,856 KB
testcase_19 AC 1,924 ms
107,740 KB
testcase_20 AC 1,987 ms
107,672 KB
testcase_21 AC 814 ms
95,608 KB
testcase_22 AC 788 ms
95,532 KB
testcase_23 AC 816 ms
95,652 KB
testcase_24 AC 802 ms
95,928 KB
testcase_25 AC 772 ms
95,812 KB
testcase_26 AC 1,730 ms
114,384 KB
testcase_27 AC 1,811 ms
114,396 KB
testcase_28 AC 1,849 ms
115,164 KB
testcase_29 AC 1,777 ms
114,652 KB
testcase_30 AC 1,747 ms
114,776 KB
testcase_31 AC 1,790 ms
114,648 KB
testcase_32 AC 1,410 ms
99,824 KB
testcase_33 AC 1,477 ms
98,452 KB
testcase_34 AC 1,484 ms
98,072 KB
testcase_35 AC 1,260 ms
95,676 KB
testcase_36 AC 1,588 ms
97,908 KB
testcase_37 AC 1,190 ms
95,636 KB
testcase_38 AC 1,204 ms
100,268 KB
testcase_39 AC 1,411 ms
97,868 KB
testcase_40 AC 1,411 ms
96,708 KB
testcase_41 AC 1,543 ms
101,764 KB
testcase_42 AC 1,159 ms
95,204 KB
testcase_43 AC 1,250 ms
94,844 KB
testcase_44 AC 1,466 ms
98,032 KB
testcase_45 AC 1,365 ms
99,648 KB
testcase_46 AC 1,570 ms
95,704 KB
testcase_47 AC 1,200 ms
94,064 KB
testcase_48 AC 1,061 ms
98,468 KB
testcase_49 AC 1,325 ms
99,176 KB
testcase_50 AC 1,122 ms
95,380 KB
testcase_51 AC 1,405 ms
98,832 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

sigma = 26


# 遅延セグメント木
class lazy_segtree:
    def update(self, k):
        self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])

    def all_apply(self, k, f):
        self.d[k] = self.mapping(f, self.d[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])

    def push(self, k):
        self.all_apply(2 * k, self.lz[k])
        self.all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.identity

    def __init__(self, V, OP, E, MAPPING, COMPOSITION, ID):
        self.n = len(V)
        self.log = (self.n - 1).bit_length()
        self.size = 1 << self.log
        self.d = [E for i in range(2 * self.size)]
        self.lz = [ID for i in range(self.size)]
        self.e = E
        self.op = OP
        self.mapping = MAPPING
        self.composition = COMPOSITION
        self.identity = ID
        for i in range(self.n):
            self.d[self.size + i] = V[i]
        for i in range(self.size - 1, 0, -1):
            self.update(i)

    def set(self, p, x):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = x
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def get(self, p):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        return self.d[p]

    def prod(self, l, r):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return self.e
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push(r >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.d[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.d[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)

    def all_prod(self):
        return self.d[1]

    def apply_point(self, p, f):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = self.mapping(f, self.d[p])
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def apply(self, l, r, f):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self.all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self.all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if ((l >> i) << i) != l:
                self.update(l >> i)
            if ((r >> i) << i) != r:
                self.update((r - 1) >> i)

    def max_right(self, l, g):
        assert 0 <= l and l <= self.n
        assert g(self.e)
        if l == self.n:
            return self.n
        l += self.size
        for i in range(self.log, 0, -1):
            self.push(l >> i)
        sm = self.e
        while 1:
            while l % 2 == 0:
                l >>= 1
            if not (g(self.op(sm, self.d[l]))):
                while l < self.size:
                    self.push(l)
                    l = 2 * l
                    if g(self.op(sm, self.d[l])):
                        sm = self.op(sm, self.d[l])
                        l += 1
                return l - self.size
            sm = self.op(sm, self.d[l])
            l += 1
            if (l & -l) == l:
                break
        return self.n

    def min_left(self, r, g):
        assert 0 <= r and r <= self.n
        assert g(self.e)
        if r == 0:
            return 0
        r += self.size
        for i in range(self.log, 0, -1):
            self.push((r - 1) >> i)
        sm = self.e
        while 1:
            r -= 1
            while r > 1 and (r % 2):
                r >>= 1
            if not (g(self.op(self.d[r], sm))):
                while r < self.size:
                    self.push(r)
                    r = 2 * r + 1
                    if g(self.op(self.d[r], sm)):
                        sm = self.op(self.d[r], sm)
                        r -= 1
                return r + 1 - self.size
            sm = self.op(self.d[r], sm)
            if (r & -r) == r:
                break
        return 0


# Fenwick木
class fenwick_tree:
    n = 1
    data = [0 for i in range(n)]

    def __init__(self, N):
        self.n = N
        self.data = [0 for i in range(N)]

    def add(self, p, x):
        assert 0 <= p < self.n, "0<=p<n,p={0},n={1}".format(p, self.n)
        p += 1
        while p <= self.n:
            self.data[p - 1] += x
            p += p & -p

    def sum(self, l, r):
        assert 0 <= l and l <= r and r <= self.n, "0<=l<=r<=n,l={0},r={1},n={2}".format(l, r, self.n)
        return self.sum0(r) - self.sum0(l)

    def sum0(self, r):
        s = 0
        while r > 0:
            s += self.data[r - 1]
            r -= r & -r
        return s


def op(x, y):
    if x is None or y is None:
        return None

    if x == sigma:
        return y

    if y == sigma:
        return x

    if x == y:
        return x
    else:
        return None


e = sigma  # ワイルドカード


def mapping(f, x):
    if x is None:
        return None

    if x == sigma:
        return sigma

    return (x + f) % sigma


def composition(f, g):
    return (f + g) % sigma


id_ = 0


S = input()
T = input()

diff = []

for s, t in zip(S, T):
    diff.append((ord(s) - ord(t)) % sigma)

seg = lazy_segtree(diff, op, e, mapping, composition, id_)

s_imos = fenwick_tree(len(S) + 1)
t_imos = fenwick_tree(len(T) + 1)

Q = int(input())

for _ in range(Q):
    cmd, *query = list(map(int, input().split()))

    if cmd == 1:
        l, r, x = query

        seg.apply(min(l - 1, len(S), len(T)), min(r, len(S), len(T)), x)
        s_imos.add(l - 1, x)
        s_imos.add(r, -x)

    elif cmd == 2:
        l, r, x = query

        seg.apply(min(l - 1, len(S), len(T)), min(r, len(S), len(T)), -x % sigma)
        t_imos.add(l - 1, x)
        t_imos.add(r, -x)

    else:
        p = query[0]

        idx = seg.max_right(p - 1, lambda x: x == 0 or x == sigma)

        if idx < min(len(S), len(T)):
            s = (s_imos.sum(0, idx + 1) + ord(S[idx]) - ord("a")) % sigma
            t = (t_imos.sum(0, idx + 1) + ord(T[idx]) - ord("a")) % sigma

            if s > t:
                print("Greater")
            elif s < t:
                print("Lesser")

        else:
            if len(S) > len(T):
                print("Greater")
            elif len(S) < len(T):
                print("Lesser")
            else:
                print("Equals")
0