結果

問題 No.2933 Range ROT Query
ユーザー 👑 loop0919
提出日時 2024-09-07 12:04:45
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,002 ms / 3,000 ms
コード長 7,180 bytes
コンパイル時間 1,486 ms
コンパイル使用メモリ 82,456 KB
実行使用メモリ 115,164 KB
最終ジャッジ日時 2024-10-02 00:29:02
合計ジャッジ時間 63,797 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 50
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

sigma = 26
#
class lazy_segtree:
def update(self, k):
self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])
def all_apply(self, k, f):
self.d[k] = self.mapping(f, self.d[k])
if k < self.size:
self.lz[k] = self.composition(f, self.lz[k])
def push(self, k):
self.all_apply(2 * k, self.lz[k])
self.all_apply(2 * k + 1, self.lz[k])
self.lz[k] = self.identity
def __init__(self, V, OP, E, MAPPING, COMPOSITION, ID):
self.n = len(V)
self.log = (self.n - 1).bit_length()
self.size = 1 << self.log
self.d = [E for i in range(2 * self.size)]
self.lz = [ID for i in range(self.size)]
self.e = E
self.op = OP
self.mapping = MAPPING
self.composition = COMPOSITION
self.identity = ID
for i in range(self.n):
self.d[self.size + i] = V[i]
for i in range(self.size - 1, 0, -1):
self.update(i)
def set(self, p, x):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.d[p] = x
for i in range(1, self.log + 1):
self.update(p >> i)
def get(self, p):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
return self.d[p]
def prod(self, l, r):
assert 0 <= l and l <= r and r <= self.n
if l == r:
return self.e
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if ((l >> i) << i) != l:
self.push(l >> i)
if ((r >> i) << i) != r:
self.push(r >> i)
sml, smr = self.e, self.e
while l < r:
if l & 1:
sml = self.op(sml, self.d[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.d[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def all_prod(self):
return self.d[1]
def apply_point(self, p, f):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.d[p] = self.mapping(f, self.d[p])
for i in range(1, self.log + 1):
self.update(p >> i)
def apply(self, l, r, f):
assert 0 <= l and l <= r and r <= self.n
if l == r:
return
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if ((l >> i) << i) != l:
self.push(l >> i)
if ((r >> i) << i) != r:
self.push((r - 1) >> i)
l2, r2 = l, r
while l < r:
if l & 1:
self.all_apply(l, f)
l += 1
if r & 1:
r -= 1
self.all_apply(r, f)
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if ((l >> i) << i) != l:
self.update(l >> i)
if ((r >> i) << i) != r:
self.update((r - 1) >> i)
def max_right(self, l, g):
assert 0 <= l and l <= self.n
assert g(self.e)
if l == self.n:
return self.n
l += self.size
for i in range(self.log, 0, -1):
self.push(l >> i)
sm = self.e
while 1:
while l % 2 == 0:
l >>= 1
if not (g(self.op(sm, self.d[l]))):
while l < self.size:
self.push(l)
l = 2 * l
if g(self.op(sm, self.d[l])):
sm = self.op(sm, self.d[l])
l += 1
return l - self.size
sm = self.op(sm, self.d[l])
l += 1
if (l & -l) == l:
break
return self.n
def min_left(self, r, g):
assert 0 <= r and r <= self.n
assert g(self.e)
if r == 0:
return 0
r += self.size
for i in range(self.log, 0, -1):
self.push((r - 1) >> i)
sm = self.e
while 1:
r -= 1
while r > 1 and (r % 2):
r >>= 1
if not (g(self.op(self.d[r], sm))):
while r < self.size:
self.push(r)
r = 2 * r + 1
if g(self.op(self.d[r], sm)):
sm = self.op(self.d[r], sm)
r -= 1
return r + 1 - self.size
sm = self.op(self.d[r], sm)
if (r & -r) == r:
break
return 0
# Fenwick
class fenwick_tree:
n = 1
data = [0 for i in range(n)]
def __init__(self, N):
self.n = N
self.data = [0 for i in range(N)]
def add(self, p, x):
assert 0 <= p < self.n, "0<=p<n,p={0},n={1}".format(p, self.n)
p += 1
while p <= self.n:
self.data[p - 1] += x
p += p & -p
def sum(self, l, r):
assert 0 <= l and l <= r and r <= self.n, "0<=l<=r<=n,l={0},r={1},n={2}".format(l, r, self.n)
return self.sum0(r) - self.sum0(l)
def sum0(self, r):
s = 0
while r > 0:
s += self.data[r - 1]
r -= r & -r
return s
def op(x, y):
if x is None or y is None:
return None
if x == sigma:
return y
if y == sigma:
return x
if x == y:
return x
else:
return None
e = sigma #
def mapping(f, x):
if x is None:
return None
if x == sigma:
return sigma
return (x + f) % sigma
def composition(f, g):
return (f + g) % sigma
id_ = 0
S = input()
T = input()
diff = []
for s, t in zip(S, T):
diff.append((ord(s) - ord(t)) % sigma)
seg = lazy_segtree(diff, op, e, mapping, composition, id_)
s_imos = fenwick_tree(len(S) + 1)
t_imos = fenwick_tree(len(T) + 1)
Q = int(input())
for _ in range(Q):
cmd, *query = list(map(int, input().split()))
if cmd == 1:
l, r, x = query
seg.apply(min(l - 1, len(S), len(T)), min(r, len(S), len(T)), x)
s_imos.add(l - 1, x)
s_imos.add(r, -x)
elif cmd == 2:
l, r, x = query
seg.apply(min(l - 1, len(S), len(T)), min(r, len(S), len(T)), -x % sigma)
t_imos.add(l - 1, x)
t_imos.add(r, -x)
else:
p = query[0]
idx = seg.max_right(p - 1, lambda x: x == 0 or x == sigma)
if idx < min(len(S), len(T)):
s = (s_imos.sum(0, idx + 1) + ord(S[idx]) - ord("a")) % sigma
t = (t_imos.sum(0, idx + 1) + ord(T[idx]) - ord("a")) % sigma
if s > t:
print("Greater")
elif s < t:
print("Lesser")
else:
if len(S) > len(T):
print("Greater")
elif len(S) < len(T):
print("Lesser")
else:
print("Equals")
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0