結果

問題 No.2883 K-powered Sum of Fibonacci
ユーザー 👑 potato167potato167
提出日時 2024-09-08 12:48:38
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 5 ms / 3,000 ms
コード長 42,419 bytes
コンパイル時間 5,052 ms
コンパイル使用メモリ 302,480 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-08 12:48:45
合計ジャッジ時間 6,620 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 3 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 3 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 3 ms
6,940 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 4 ms
6,940 KB
testcase_15 AC 3 ms
6,944 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 2 ms
6,944 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 4 ms
6,944 KB
testcase_21 AC 4 ms
6,940 KB
testcase_22 AC 4 ms
6,940 KB
testcase_23 AC 4 ms
6,944 KB
testcase_24 AC 4 ms
6,940 KB
testcase_25 AC 4 ms
6,940 KB
testcase_26 AC 4 ms
6,940 KB
testcase_27 AC 4 ms
6,944 KB
testcase_28 AC 4 ms
6,940 KB
testcase_29 AC 4 ms
6,944 KB
testcase_30 AC 2 ms
6,944 KB
testcase_31 AC 2 ms
6,940 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 2 ms
6,944 KB
testcase_34 AC 2 ms
6,940 KB
testcase_35 AC 2 ms
6,944 KB
testcase_36 AC 2 ms
6,944 KB
testcase_37 AC 2 ms
6,940 KB
testcase_38 AC 2 ms
6,944 KB
testcase_39 AC 2 ms
6,944 KB
testcase_40 AC 2 ms
6,940 KB
testcase_41 AC 2 ms
6,940 KB
testcase_42 AC 5 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "verify/verify-yuki/yuki-0215-nth-term.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/215"

#line 2 "template/template.hpp"
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
#line 1 "template/util.hpp"
namespace Nyaan {
    using ll = long long;
    using i64 = long long;
    using u64 = unsigned long long;
    using i128 = __int128_t;
    using u128 = __uint128_t;

    template <typename T>
    using V = vector<T>;
    template <typename T>
    using VV = vector<vector<T>>;
    using vi = vector<int>;
    using vl = vector<long long>;
    using vd = V<double>;
    using vs = V<string>;
    using vvi = vector<vector<int>>;
    using vvl = vector<vector<long long>>;
    template <typename T>
    using minpq = priority_queue<T, vector<T>, greater<T>>;

    template <typename T, typename U>
    struct P : pair<T, U> {
        template <typename... Args>
        P(Args... args) : pair<T, U>(args...) {}

        using pair<T, U>::first;
        using pair<T, U>::second;

        P &operator+=(const P &r) {
            first += r.first;
            second += r.second;
            return *this;
        }
        P &operator-=(const P &r) {
            first -= r.first;
            second -= r.second;
            return *this;
        }
        P &operator*=(const P &r) {
            first *= r.first;
            second *= r.second;
            return *this;
        }
        template <typename S>
        P &operator*=(const S &r) {
            first *= r, second *= r;
            return *this;
        }
        P operator+(const P &r) const { return P(*this) += r; }
        P operator-(const P &r) const { return P(*this) -= r; }
        P operator*(const P &r) const { return P(*this) *= r; }
        template <typename S>
        P operator*(const S &r) const {
            return P(*this) *= r;
        }
        P operator-() const { return P{-first, -second}; }
    };

    using pl = P<ll, ll>;
    using pi = P<int, int>;
    using vp = V<pl>;

    constexpr int inf = 1001001001;
    constexpr long long infLL = 4004004004004004004LL;

    template <typename T>
    int sz(const T &t) {
        return t.size();
    }

    template <typename T, typename U>
    inline bool amin(T &x, U y) {
        return (y < x) ? (x = y, true) : false;
    }
    template <typename T, typename U>
    inline bool amax(T &x, U y) {
        return (x < y) ? (x = y, true) : false;
    }

    template <typename T>
    inline T Max(const vector<T> &v) {
        return *max_element(begin(v), end(v));
    }
    template <typename T>
    inline T Min(const vector<T> &v) {
        return *min_element(begin(v), end(v));
    }
    template <typename T>
    inline long long Sum(const vector<T> &v) {
        return accumulate(begin(v), end(v), 0LL);
    }

    template <typename T>
    int lb(const vector<T> &v, const T &a) {
        return lower_bound(begin(v), end(v), a) - begin(v);
    }
    template <typename T>
    int ub(const vector<T> &v, const T &a) {
        return upper_bound(begin(v), end(v), a) - begin(v);
    }

    constexpr long long TEN(int n) {
        long long ret = 1, x = 10;
        for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
        return ret;
    }

    template <typename T, typename U>
    pair<T, U> mkp(const T &t, const U &u) {
        return make_pair(t, u);
    }

    template <typename T>
    vector<T> mkrui(const vector<T> &v, bool rev = false) {
        vector<T> ret(v.size() + 1);
        if (rev) {
            for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
        } else {
            for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
        }
        return ret;
    };

    template <typename T>
    vector<T> mkuni(const vector<T> &v) {
        vector<T> ret(v);
        sort(ret.begin(), ret.end());
        ret.erase(unique(ret.begin(), ret.end()), ret.end());
        return ret;
    }

    template <typename F>
    vector<int> mkord(int N, F f) {
        vector<int> ord(N);
        iota(begin(ord), end(ord), 0);
        sort(begin(ord), end(ord), f);
        return ord;
    }

    template <typename T>
    vector<int> mkinv(vector<T> &v) {
        int max_val = *max_element(begin(v), end(v));
        vector<int> inv(max_val + 1, -1);
        for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
        return inv;
    }

    vector<int> mkiota(int n) {
        vector<int> ret(n);
        iota(begin(ret), end(ret), 0);
        return ret;
    }

    template <typename T>
    T mkrev(const T &v) {
        T w{v};
        reverse(begin(w), end(w));
        return w;
    }

    template <typename T>
    bool nxp(T &v) {
        return next_permutation(begin(v), end(v));
    }

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
    template <typename T>
    vector<vector<T>> product(const vector<T> &a) {
        vector<vector<T>> ret;
        vector<T> v;
        auto dfs = [&](auto rc, int i) -> void {
            if (i == (int)a.size()) {
                ret.push_back(v);
                return;
            }
            for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
        };
        dfs(dfs, 0);
        return ret;
    }

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
    template <typename T>
    T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
        T res = I;
        for (; n; f(a = a * a), n >>= 1) {
            if (n & 1) f(res = res * a);
        }
        return res;
    }
// T : 整数型のときはオーバーフローに注意する
    template <typename T>
    T Power(T a, long long n, const T &I = T{1}) {
        return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
    }

    template <typename T>
    T Rev(const T &v) {
        T res = v;
        reverse(begin(res), end(res));
        return res;
    }

    template <typename T>
    vector<T> Transpose(const vector<T> &v) {
        using U = typename T::value_type;
        if(v.empty()) return {};
        int H = v.size(), W = v[0].size();
        vector res(W, T(H, U{}));
        for (int i = 0; i < H; i++) {
            for (int j = 0; j < W; j++) {
                res[j][i] = v[i][j];
            }
        }
        return res;
    }

    template <typename T>
    vector<T> Rotate(const vector<T> &v, int clockwise = true) {
        using U = typename T::value_type;
        int H = v.size(), W = v[0].size();
        vector res(W, T(H, U{}));
        for (int i = 0; i < H; i++) {
            for (int j = 0; j < W; j++) {
                if (clockwise) {
                    res[W - 1 - j][i] = v[i][j];
                } else {
                    res[j][H - 1 - i] = v[i][j];
                }
            }
        }
        return res;
    }

}  // namespace Nyaan
#line 58 "template/template.hpp"

// bit operation
#line 1 "template/bitop.hpp"
namespace Nyaan {
    __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
        return __builtin_popcountll(a);
    }
    inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
    inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
    inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
    template <typename T>
    inline int gbit(const T &a, int i) {
        return (a >> i) & 1;
    }
    template <typename T>
    inline void sbit(T &a, int i, bool b) {
        if (gbit(a, i) != b) a ^= T(1) << i;
    }
    constexpr long long PW(int n) { return 1LL << n; }
    constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan
#line 61 "template/template.hpp"

// inout
#line 1 "template/inout.hpp"
namespace Nyaan {

    template <typename T, typename U>
    ostream &operator<<(ostream &os, const pair<T, U> &p) {
        os << p.first << " " << p.second;
        return os;
    }
    template <typename T, typename U>
    istream &operator>>(istream &is, pair<T, U> &p) {
        is >> p.first >> p.second;
        return is;
    }

    template <typename T>
    ostream &operator<<(ostream &os, const vector<T> &v) {
        int s = (int)v.size();
        for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
        return os;
    }
    template <typename T>
    istream &operator>>(istream &is, vector<T> &v) {
        for (auto &x : v) is >> x;
        return is;
    }

    istream &operator>>(istream &is, __int128_t &x) {
        string S;
        is >> S;
        x = 0;
        int flag = 0;
        for (auto &c : S) {
            if (c == '-') {
                flag = true;
                continue;
            }
            x *= 10;
            x += c - '0';
        }
        if (flag) x = -x;
        return is;
    }

    istream &operator>>(istream &is, __uint128_t &x) {
        string S;
        is >> S;
        x = 0;
        for (auto &c : S) {
            x *= 10;
            x += c - '0';
        }
        return is;
    }

    ostream &operator<<(ostream &os, __int128_t x) {
        if (x == 0) return os << 0;
        if (x < 0) os << '-', x = -x;
        string S;
        while (x) S.push_back('0' + x % 10), x /= 10;
        reverse(begin(S), end(S));
        return os << S;
    }
    ostream &operator<<(ostream &os, __uint128_t x) {
        if (x == 0) return os << 0;
        string S;
        while (x) S.push_back('0' + x % 10), x /= 10;
        reverse(begin(S), end(S));
        return os << S;
    }

    void in() {}
    template <typename T, class... U>
    void in(T &t, U &...u) {
        cin >> t;
        in(u...);
    }

    void out() { cout << "\n"; }
    template <typename T, class... U, char sep = ' '>
    void out(const T &t, const U &...u) {
        cout << t;
        if (sizeof...(u)) cout << sep;
        out(u...);
    }

    struct IoSetupNya {
        IoSetupNya() {
            cin.tie(nullptr);
            ios::sync_with_stdio(false);
            cout << fixed << setprecision(15);
            cerr << fixed << setprecision(7);
        }
    } iosetupnya;

}  // namespace Nyaan
#line 64 "template/template.hpp"

// debug
#line 1 "template/debug.hpp"
namespace DebugImpl {

    template <typename U, typename = void>
    struct is_specialize : false_type {};
    template <typename U>
    struct is_specialize<
            U, typename conditional<false, typename U::iterator, void>::type>
            : true_type {};
    template <typename U>
    struct is_specialize<
            U, typename conditional<false, decltype(U::first), void>::type>
            : true_type {};
    template <typename U>
    struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
    };

    void dump(const char& t) { cerr << t; }

    void dump(const string& t) { cerr << t; }

    void dump(const bool& t) { cerr << (t ? "true" : "false"); }

    void dump(__int128_t t) {
        if (t == 0) cerr << 0;
        if (t < 0) cerr << '-', t = -t;
        string S;
        while (t) S.push_back('0' + t % 10), t /= 10;
        reverse(begin(S), end(S));
        cerr << S;
    }

    void dump(__uint128_t t) {
        if (t == 0) cerr << 0;
        string S;
        while (t) S.push_back('0' + t % 10), t /= 10;
        reverse(begin(S), end(S));
        cerr << S;
    }

    template <typename U,
            enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
    void dump(const U& t) {
        cerr << t;
    }

    template <typename T>
    void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
        string res;
        if (t == Nyaan::inf) res = "inf";
        if constexpr (is_signed<T>::value) {
            if (t == -Nyaan::inf) res = "-inf";
        }
        if constexpr (sizeof(T) == 8) {
            if (t == Nyaan::infLL) res = "inf";
            if constexpr (is_signed<T>::value) {
                if (t == -Nyaan::infLL) res = "-inf";
            }
        }
        if (res.empty()) res = to_string(t);
        cerr << res;
    }

    template <typename T, typename U>
    void dump(const pair<T, U>&);
    template <typename T>
    void dump(const pair<T*, int>&);

    template <typename T>
    void dump(const T& t,
              enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
        cerr << "[ ";
        for (auto it = t.begin(); it != t.end();) {
            dump(*it);
            cerr << (++it == t.end() ? "" : ", ");
        }
        cerr << " ]";
    }

    template <typename T, typename U>
    void dump(const pair<T, U>& t) {
        cerr << "( ";
        dump(t.first);
        cerr << ", ";
        dump(t.second);
        cerr << " )";
    }

    template <typename T>
    void dump(const pair<T*, int>& t) {
        cerr << "[ ";
        for (int i = 0; i < t.second; i++) {
            dump(t.first[i]);
            cerr << (i == t.second - 1 ? "" : ", ");
        }
        cerr << " ]";
    }

    void trace() { cerr << endl; }
    template <typename Head, typename... Tail>
    void trace(Head&& head, Tail&&... tail) {
        cerr << " ";
        dump(head);
        if (sizeof...(tail) != 0) cerr << ",";
        trace(std::forward<Tail>(tail)...);
    }

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...)                           \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc2(...) (void(0))
#endif
#line 67 "template/template.hpp"

// macro
#line 1 "template/macro.hpp"
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)
#line 70 "template/template.hpp"

namespace Nyaan {
    void solve();
}
int main() { Nyaan::solve(); }
#line 4 "verify/verify-yuki/yuki-0215-nth-term.test.cpp"
//
#line 2 "fps/arbitrary-fps.hpp"

#line 2 "ntt/arbitrary-ntt.hpp"

#line 2 "modint/montgomery-modint.hpp"

template <uint32_t mod>
struct LazyMontgomeryModInt {
    using mint = LazyMontgomeryModInt;
    using i32 = int32_t;
    using u32 = uint32_t;
    using u64 = uint64_t;

    static constexpr u32 get_r() {
        u32 ret = mod;
        for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
        return ret;
    }

    static constexpr u32 r = get_r();
    static constexpr u32 n2 = -u64(mod) % mod;
    static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
    static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
    static_assert(r * mod == 1, "this code has bugs.");

    u32 a;

    constexpr LazyMontgomeryModInt() : a(0) {}
    constexpr LazyMontgomeryModInt(const int64_t &b)
            : a(reduce(u64(b % mod + mod) * n2)){};

    static constexpr u32 reduce(const u64 &b) {
        return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
    }

    constexpr mint &operator+=(const mint &b) {
        if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
        return *this;
    }

    constexpr mint &operator-=(const mint &b) {
        if (i32(a -= b.a) < 0) a += 2 * mod;
        return *this;
    }

    constexpr mint &operator*=(const mint &b) {
        a = reduce(u64(a) * b.a);
        return *this;
    }

    constexpr mint &operator/=(const mint &b) {
        *this *= b.inverse();
        return *this;
    }

    constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
    constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
    constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
    constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
    constexpr bool operator==(const mint &b) const {
        return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
    }
    constexpr bool operator!=(const mint &b) const {
        return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
    }
    constexpr mint operator-() const { return mint() - mint(*this); }
    constexpr mint operator+() const { return mint(*this); }

    constexpr mint pow(u64 n) const {
        mint ret(1), mul(*this);
        while (n > 0) {
            if (n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }

    constexpr mint inverse() const {
        int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
        while (y > 0) {
            t = x / y;
            x -= t * y, u -= t * v;
            tmp = x, x = y, y = tmp;
            tmp = u, u = v, v = tmp;
        }
        return mint{u};
    }

    friend ostream &operator<<(ostream &os, const mint &b) {
        return os << b.get();
    }

    friend istream &operator>>(istream &is, mint &b) {
        int64_t t;
        is >> t;
        b = LazyMontgomeryModInt<mod>(t);
        return (is);
    }

    constexpr u32 get() const {
        u32 ret = reduce(a);
        return ret >= mod ? ret - mod : ret;
    }

    static constexpr u32 get_mod() { return mod; }
};
#line 2 "ntt/ntt.hpp"

template <typename mint>
struct NTT {
    static constexpr uint32_t get_pr() {
        uint32_t _mod = mint::get_mod();
        using u64 = uint64_t;
        u64 ds[32] = {};
        int idx = 0;
        u64 m = _mod - 1;
        for (u64 i = 2; i * i <= m; ++i) {
            if (m % i == 0) {
                ds[idx++] = i;
                while (m % i == 0) m /= i;
            }
        }
        if (m != 1) ds[idx++] = m;

        uint32_t _pr = 2;
        while (1) {
            int flg = 1;
            for (int i = 0; i < idx; ++i) {
                u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
                while (b) {
                    if (b & 1) r = r * a % _mod;
                    a = a * a % _mod;
                    b >>= 1;
                }
                if (r == 1) {
                    flg = 0;
                    break;
                }
            }
            if (flg == 1) break;
            ++_pr;
        }
        return _pr;
    };

    static constexpr uint32_t mod = mint::get_mod();
    static constexpr uint32_t pr = get_pr();
    static constexpr int level = __builtin_ctzll(mod - 1);
    mint dw[level], dy[level];

    void setwy(int k) {
        mint w[level], y[level];
        w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
        y[k - 1] = w[k - 1].inverse();
        for (int i = k - 2; i > 0; --i)
            w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
        dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
        for (int i = 3; i < k; ++i) {
            dw[i] = dw[i - 1] * y[i - 2] * w[i];
            dy[i] = dy[i - 1] * w[i - 2] * y[i];
        }
    }

    NTT() { setwy(level); }

    void fft4(vector<mint> &a, int k) {
        if ((int)a.size() <= 1) return;
        if (k == 1) {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            return;
        }
        if (k & 1) {
            int v = 1 << (k - 1);
            for (int j = 0; j < v; ++j) {
                mint ajv = a[j + v];
                a[j + v] = a[j] - ajv;
                a[j] += ajv;
            }
        }
        int u = 1 << (2 + (k & 1));
        int v = 1 << (k - 2 - (k & 1));
        mint one = mint(1);
        mint imag = dw[1];
        while (v) {
            // jh = 0
            {
                int j0 = 0;
                int j1 = v;
                int j2 = j1 + v;
                int j3 = j2 + v;
                for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
                    mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
                    mint t0p2 = t0 + t2, t1p3 = t1 + t3;
                    mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
                    a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
                    a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
                }
            }
            // jh >= 1
            mint ww = one, xx = one * dw[2], wx = one;
            for (int jh = 4; jh < u;) {
                ww = xx * xx, wx = ww * xx;
                int j0 = jh * v;
                int je = j0 + v;
                int j2 = je + v;
                for (; j0 < je; ++j0, ++j2) {
                    mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
                            t3 = a[j2 + v] * wx;
                    mint t0p2 = t0 + t2, t1p3 = t1 + t3;
                    mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
                    a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
                    a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
                }
                xx *= dw[__builtin_ctzll((jh += 4))];
            }
            u <<= 2;
            v >>= 2;
        }
    }

    void ifft4(vector<mint> &a, int k) {
        if ((int)a.size() <= 1) return;
        if (k == 1) {
            mint a1 = a[1];
            a[1] = a[0] - a[1];
            a[0] = a[0] + a1;
            return;
        }
        int u = 1 << (k - 2);
        int v = 1;
        mint one = mint(1);
        mint imag = dy[1];
        while (u) {
            // jh = 0
            {
                int j0 = 0;
                int j1 = v;
                int j2 = v + v;
                int j3 = j2 + v;
                for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
                    mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
                    mint t0p1 = t0 + t1, t2p3 = t2 + t3;
                    mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
                    a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
                    a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
                }
            }
            // jh >= 1
            mint ww = one, xx = one * dy[2], yy = one;
            u <<= 2;
            for (int jh = 4; jh < u;) {
                ww = xx * xx, yy = xx * imag;
                int j0 = jh * v;
                int je = j0 + v;
                int j2 = je + v;
                for (; j0 < je; ++j0, ++j2) {
                    mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
                    mint t0p1 = t0 + t1, t2p3 = t2 + t3;
                    mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
                    a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
                    a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
                }
                xx *= dy[__builtin_ctzll(jh += 4)];
            }
            u >>= 4;
            v <<= 2;
        }
        if (k & 1) {
            u = 1 << (k - 1);
            for (int j = 0; j < u; ++j) {
                mint ajv = a[j] - a[j + u];
                a[j] += a[j + u];
                a[j + u] = ajv;
            }
        }
    }

    void ntt(vector<mint> &a) {
        if ((int)a.size() <= 1) return;
        fft4(a, __builtin_ctz(a.size()));
    }

    void intt(vector<mint> &a) {
        if ((int)a.size() <= 1) return;
        ifft4(a, __builtin_ctz(a.size()));
        mint iv = mint(a.size()).inverse();
        for (auto &x : a) x *= iv;
    }

    vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
        int l = a.size() + b.size() - 1;
        if (min<int>(a.size(), b.size()) <= 40) {
            vector<mint> s(l);
            for (int i = 0; i < (int)a.size(); ++i)
                for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
            return s;
        }
        int k = 2, M = 4;
        while (M < l) M <<= 1, ++k;
        setwy(k);
        vector<mint> s(M);
        for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
        fft4(s, k);
        if (a.size() == b.size() && a == b) {
            for (int i = 0; i < M; ++i) s[i] *= s[i];
        } else {
            vector<mint> t(M);
            for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
            fft4(t, k);
            for (int i = 0; i < M; ++i) s[i] *= t[i];
        }
        ifft4(s, k);
        s.resize(l);
        mint invm = mint(M).inverse();
        for (int i = 0; i < l; ++i) s[i] *= invm;
        return s;
    }

    void ntt_doubling(vector<mint> &a) {
        int M = (int)a.size();
        auto b = a;
        intt(b);
        mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
        for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
        ntt(b);
        copy(begin(b), end(b), back_inserter(a));
    }
};
#line 5 "ntt/arbitrary-ntt.hpp"

namespace ArbitraryNTT {
    using i64 = int64_t;
    using u128 = __uint128_t;
    constexpr int32_t m0 = 167772161;
    constexpr int32_t m1 = 469762049;
    constexpr int32_t m2 = 754974721;
    using mint0 = LazyMontgomeryModInt<m0>;
    using mint1 = LazyMontgomeryModInt<m1>;
    using mint2 = LazyMontgomeryModInt<m2>;
    constexpr int r01 = mint1(m0).inverse().get();
    constexpr int r02 = mint2(m0).inverse().get();
    constexpr int r12 = mint2(m1).inverse().get();
    constexpr int r02r12 = i64(r02) * r12 % m2;
    constexpr i64 w1 = m0;
    constexpr i64 w2 = i64(m0) * m1;

    template <typename T, typename submint>
    vector<submint> mul(const vector<T> &a, const vector<T> &b) {
        static NTT<submint> ntt;
        vector<submint> s(a.size()), t(b.size());
        for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod());
        for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod());
        return ntt.multiply(s, t);
    }

    template <typename T>
    vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) {
        auto d0 = mul<T, mint0>(s, t);
        auto d1 = mul<T, mint1>(s, t);
        auto d2 = mul<T, mint2>(s, t);
        int n = d0.size();
        vector<int> ret(n);
        const int W1 = w1 % mod;
        const int W2 = w2 % mod;
        for (int i = 0; i < n; i++) {
            int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get();
            int b = i64(n1 + m1 - a) * r01 % m1;
            int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2;
            ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod;
        }
        return ret;
    }

    template <typename mint>
    vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
        if (a.size() == 0 && b.size() == 0) return {};
        if (min<int>(a.size(), b.size()) < 128) {
            vector<mint> ret(a.size() + b.size() - 1);
            for (int i = 0; i < (int)a.size(); ++i)
                for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j];
            return ret;
        }
        vector<int> s(a.size()), t(b.size());
        for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get();
        for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get();
        vector<int> u = multiply<int>(s, t, mint::get_mod());
        vector<mint> ret(u.size());
        for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]);
        return ret;
    }

    template <typename T>
    vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) {
        if (s.size() == 0 && t.size() == 0) return {};
        if (min<int>(s.size(), t.size()) < 128) {
            vector<u128> ret(s.size() + t.size() - 1);
            for (int i = 0; i < (int)s.size(); ++i)
                for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j];
            return ret;
        }
        auto d0 = mul<T, mint0>(s, t);
        auto d1 = mul<T, mint1>(s, t);
        auto d2 = mul<T, mint2>(s, t);
        int n = d0.size();
        vector<u128> ret(n);
        for (int i = 0; i < n; i++) {
            i64 n1 = d1[i].get(), n2 = d2[i].get();
            i64 a = d0[i].get();
            i64 b = (n1 + m1 - a) * r01 % m1;
            i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2;
            ret[i] = a + b * w1 + u128(c) * w2;
        }
        return ret;
    }
}  // namespace ArbitraryNTT
#line 2 "fps/formal-power-series.hpp"

template <typename mint>
struct FormalPowerSeries : vector<mint> {
    using vector<mint>::vector;
    using FPS = FormalPowerSeries;

    FPS &operator+=(const FPS &r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
        return *this;
    }

    FPS &operator+=(const mint &r) {
        if (this->empty()) this->resize(1);
        (*this)[0] += r;
        return *this;
    }

    FPS &operator-=(const FPS &r) {
        if (r.size() > this->size()) this->resize(r.size());
        for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
        return *this;
    }

    FPS &operator-=(const mint &r) {
        if (this->empty()) this->resize(1);
        (*this)[0] -= r;
        return *this;
    }

    FPS &operator*=(const mint &v) {
        for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
        return *this;
    }

    FPS &operator/=(const FPS &r) {
        if (this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int n = this->size() - r.size() + 1;
        if ((int)r.size() <= 64) {
            FPS f(*this), g(r);
            g.shrink();
            mint coeff = g.back().inverse();
            for (auto &x : g) x *= coeff;
            int deg = (int)f.size() - (int)g.size() + 1;
            int gs = g.size();
            FPS quo(deg);
            for (int i = deg - 1; i >= 0; i--) {
                quo[i] = f[i + gs - 1];
                for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
            }
            *this = quo * coeff;
            this->resize(n, mint(0));
            return *this;
        }
        return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
    }

    FPS &operator%=(const FPS &r) {
        *this -= *this / r * r;
        shrink();
        return *this;
    }

    FPS operator+(const FPS &r) const { return FPS(*this) += r; }
    FPS operator+(const mint &v) const { return FPS(*this) += v; }
    FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
    FPS operator-(const mint &v) const { return FPS(*this) -= v; }
    FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
    FPS operator*(const mint &v) const { return FPS(*this) *= v; }
    FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
    FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
    FPS operator-() const {
        FPS ret(this->size());
        for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
        return ret;
    }

    void shrink() {
        while (this->size() && this->back() == mint(0)) this->pop_back();
    }

    FPS rev() const {
        FPS ret(*this);
        reverse(begin(ret), end(ret));
        return ret;
    }

    FPS dot(FPS r) const {
        FPS ret(min(this->size(), r.size()));
        for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
        return ret;
    }

    // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
    FPS pre(int sz) const {
        FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
        if ((int)ret.size() < sz) ret.resize(sz);
        return ret;
    }

    FPS operator>>(int sz) const {
        if ((int)this->size() <= sz) return {};
        FPS ret(*this);
        ret.erase(ret.begin(), ret.begin() + sz);
        return ret;
    }

    FPS operator<<(int sz) const {
        FPS ret(*this);
        ret.insert(ret.begin(), sz, mint(0));
        return ret;
    }

    FPS diff() const {
        const int n = (int)this->size();
        FPS ret(max(0, n - 1));
        mint one(1), coeff(1);
        for (int i = 1; i < n; i++) {
            ret[i - 1] = (*this)[i] * coeff;
            coeff += one;
        }
        return ret;
    }

    FPS integral() const {
        const int n = (int)this->size();
        FPS ret(n + 1);
        ret[0] = mint(0);
        if (n > 0) ret[1] = mint(1);
        auto mod = mint::get_mod();
        for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
        for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
        return ret;
    }

    mint eval(mint x) const {
        mint r = 0, w = 1;
        for (auto &v : *this) r += w * v, w *= x;
        return r;
    }

    FPS log(int deg = -1) const {
        assert(!(*this).empty() && (*this)[0] == mint(1));
        if (deg == -1) deg = (int)this->size();
        return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }

    FPS pow(int64_t k, int deg = -1) const {
        const int n = (int)this->size();
        if (deg == -1) deg = n;
        if (k == 0) {
            FPS ret(deg);
            if (deg) ret[0] = 1;
            return ret;
        }
        for (int i = 0; i < n; i++) {
            if ((*this)[i] != mint(0)) {
                mint rev = mint(1) / (*this)[i];
                FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
                ret *= (*this)[i].pow(k);
                ret = (ret << (i * k)).pre(deg);
                if ((int)ret.size() < deg) ret.resize(deg, mint(0));
                return ret;
            }
            if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
        }
        return FPS(deg, mint(0));
    }

    static void *ntt_ptr;
    static void set_fft();
    FPS &operator*=(const FPS &r);
    void ntt();
    void intt();
    void ntt_doubling();
    static int ntt_pr();
    FPS inv(int deg = -1) const;
    FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

/**
 * @brief 多項式/形式的冪級数ライブラリ
 * @docs docs/fps/formal-power-series.md
 */
#line 5 "fps/arbitrary-fps.hpp"

template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
    ntt_ptr = nullptr;
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
    exit(1);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
    exit(1);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
    exit(1);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
    exit(1);
}

template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
        const FormalPowerSeries<mint>& r) {
    if (this->empty() || r.empty()) {
        this->clear();
        return *this;
    }
    auto ret = ArbitraryNTT::multiply(*this, r);
    return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
    assert((*this)[0] != mint(0));
    if (deg == -1) deg = (*this).size();
    FormalPowerSeries<mint> ret({mint(1) / (*this)[0]});
    for (int i = 1; i < deg; i <<= 1)
        ret = (ret + ret - ret * ret * (*this).pre(i << 1)).pre(i << 1);
    return ret.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
    assert((*this).size() == 0 || (*this)[0] == mint(0));
    if (deg == -1) deg = (int)this->size();
    FormalPowerSeries<mint> ret({mint(1)});
    for (int i = 1; i < deg; i <<= 1) {
        ret = (ret * (pre(i << 1) + mint(1) - ret.log(i << 1))).pre(i << 1);
    }
    return ret.pre(deg);
}
#line 7 "verify/verify-yuki/yuki-0215-nth-term.test.cpp"
using mint = LazyMontgomeryModInt<998244353>;
using vm = vector<mint>;
using vvm = vector<vm>;
using fps = FormalPowerSeries<mint>;

#line 2 "fps/nth-term.hpp"

#line 2 "fps/berlekamp-massey.hpp"

template <typename mint>
vector<mint> BerlekampMassey(const vector<mint> &s) {
    const int N = (int)s.size();
    vector<mint> b, c;
    b.reserve(N + 1);
    c.reserve(N + 1);
    b.push_back(mint(1));
    c.push_back(mint(1));
    mint y = mint(1);
    for (int ed = 1; ed <= N; ed++) {
        int l = int(c.size()), m = int(b.size());
        mint x = 0;
        for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];
        b.emplace_back(mint(0));
        m++;
        if (x == mint(0)) continue;
        mint freq = x / y;
        if (l < m) {
            auto tmp = c;
            c.insert(begin(c), m - l, mint(0));
            for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];
            b = tmp;
            y = x;
        } else {
            for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];
        }
    }
    reverse(begin(c), end(c));
    return c;
}
#line 2 "fps/kitamasa.hpp"

#line 4 "fps/kitamasa.hpp"

template <typename mint>
mint LinearRecurrence(long long k, FormalPowerSeries<mint> Q,
                      FormalPowerSeries<mint> P) {
    Q.shrink();
    mint ret = 0;
    if (P.size() >= Q.size()) {
        auto R = P / Q;
        P -= R * Q;
        P.shrink();
        if (k < (int)R.size()) ret += R[k];
    }
    if ((int)P.size() == 0) return ret;

    FormalPowerSeries<mint>::set_fft();
    if (FormalPowerSeries<mint>::ntt_ptr == nullptr) {
        P.resize((int)Q.size() - 1);
        while (k) {
            auto Q2 = Q;
            for (int i = 1; i < (int)Q2.size(); i += 2) Q2[i] = -Q2[i];
            auto S = P * Q2;
            auto T = Q * Q2;
            if (k & 1) {
                for (int i = 1; i < (int)S.size(); i += 2) P[i >> 1] = S[i];
                for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];
            } else {
                for (int i = 0; i < (int)S.size(); i += 2) P[i >> 1] = S[i];
                for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];
            }
            k >>= 1;
        }
        return ret + P[0];
    } else {
        int N = 1;
        while (N < (int)Q.size()) N <<= 1;

        P.resize(2 * N);
        Q.resize(2 * N);
        P.ntt();
        Q.ntt();
        vector<mint> S(2 * N), T(2 * N);

        vector<int> btr(N);
        for (int i = 0, logn = __builtin_ctz(N); i < (1 << logn); i++) {
            btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (logn - 1));
        }
        mint dw = mint(FormalPowerSeries<mint>::ntt_pr())
                .inverse()
                .pow((mint::get_mod() - 1) / (2 * N));

        while (k) {
            mint inv2 = mint(2).inverse();

            // even degree of Q(x)Q(-x)
            T.resize(N);
            for (int i = 0; i < N; i++) T[i] = Q[(i << 1) | 0] * Q[(i << 1) | 1];

            S.resize(N);
            if (k & 1) {
                // odd degree of P(x)Q(-x)
                for (auto &i : btr) {
                    S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] -
                            P[(i << 1) | 1] * Q[(i << 1) | 0]) *
                           inv2;
                    inv2 *= dw;
                }
            } else {
                // even degree of P(x)Q(-x)
                for (int i = 0; i < N; i++) {
                    S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] +
                            P[(i << 1) | 1] * Q[(i << 1) | 0]) *
                           inv2;
                }
            }
            swap(P, S);
            swap(Q, T);
            k >>= 1;
            if (k < N) break;
            P.ntt_doubling();
            Q.ntt_doubling();
        }
        P.intt();
        Q.intt();
        return ret + (P * (Q.inv()))[k];
    }
}

template <typename mint>
mint kitamasa(long long N, FormalPowerSeries<mint> Q,
              FormalPowerSeries<mint> a) {
    assert(!Q.empty() && Q[0] != 0);
    if (N < (int)a.size()) return a[N];
    assert((int)a.size() >= int(Q.size()) - 1);
    auto P = a.pre((int)Q.size() - 1) * Q;
    P.resize(Q.size() - 1);
    return LinearRecurrence<mint>(N, Q, P);
}

/**
 * @brief 線形漸化式の高速計算
 * @docs docs/fps/kitamasa.md
 */
#line 5 "fps/nth-term.hpp"

template <typename mint>
mint nth_term(long long n, const vector<mint> &s) {
    using fps = FormalPowerSeries<mint>;
    auto bm = BerlekampMassey<mint>(s);
    return kitamasa(n, fps{begin(bm), end(bm)}, fps{begin(s), end(s)});
}

/**
 * @brief 線形回帰数列の高速計算(Berlekamp-Massey/Bostan-Mori)
 * @docs docs/fps/nth-term.md
 */
#line 13 "verify/verify-yuki/yuki-0215-nth-term.test.cpp"

using namespace Nyaan; void Nyaan::solve() {
    ll N, K;
    cin >> N >> K;

    vector<mint> fib(K * 3 + 1, 1);
    mint a = 1, b = 1;
    rep(i, K * 3){
        swap(a, b);
        b += a;
        fib[i + 1] = fib[i] + (a).pow(K);
    }
    out(nth_term(N - 1, fib));
}
0