結果

問題 No.2883 K-powered Sum of Fibonacci
ユーザー t98slidert98slider
提出日時 2024-09-08 14:02:08
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 244 ms / 3,000 ms
コード長 6,173 bytes
コンパイル時間 2,330 ms
コンパイル使用メモリ 208,852 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-08 14:02:18
合計ジャッジ時間 9,727 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 26 ms
6,812 KB
testcase_01 AC 23 ms
6,944 KB
testcase_02 AC 26 ms
6,944 KB
testcase_03 AC 28 ms
6,944 KB
testcase_04 AC 21 ms
6,940 KB
testcase_05 AC 52 ms
6,944 KB
testcase_06 AC 61 ms
6,944 KB
testcase_07 AC 64 ms
6,944 KB
testcase_08 AC 63 ms
6,940 KB
testcase_09 AC 59 ms
6,940 KB
testcase_10 AC 210 ms
6,940 KB
testcase_11 AC 214 ms
6,940 KB
testcase_12 AC 199 ms
6,944 KB
testcase_13 AC 220 ms
6,940 KB
testcase_14 AC 210 ms
6,940 KB
testcase_15 AC 199 ms
6,944 KB
testcase_16 AC 218 ms
6,940 KB
testcase_17 AC 209 ms
6,944 KB
testcase_18 AC 202 ms
6,940 KB
testcase_19 AC 204 ms
6,940 KB
testcase_20 AC 224 ms
6,944 KB
testcase_21 AC 211 ms
6,940 KB
testcase_22 AC 225 ms
6,944 KB
testcase_23 AC 218 ms
6,940 KB
testcase_24 AC 223 ms
6,940 KB
testcase_25 AC 237 ms
6,940 KB
testcase_26 AC 237 ms
6,940 KB
testcase_27 AC 237 ms
6,944 KB
testcase_28 AC 244 ms
6,944 KB
testcase_29 AC 202 ms
6,940 KB
testcase_30 AC 7 ms
6,944 KB
testcase_31 AC 9 ms
6,944 KB
testcase_32 AC 12 ms
6,944 KB
testcase_33 AC 12 ms
6,940 KB
testcase_34 AC 14 ms
6,944 KB
testcase_35 AC 223 ms
6,940 KB
testcase_36 AC 220 ms
6,940 KB
testcase_37 AC 192 ms
6,944 KB
testcase_38 AC 218 ms
6,944 KB
testcase_39 AC 210 ms
6,940 KB
testcase_40 AC 11 ms
6,940 KB
testcase_41 AC 7 ms
6,940 KB
testcase_42 AC 201 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

template<const unsigned int MOD> struct prime_modint {
	using mint = prime_modint;
	unsigned int v;
	prime_modint() : v(0) {}
	prime_modint(unsigned int a) { a %= MOD; v = a; }
	prime_modint(unsigned long long a) { a %= MOD; v = a; }
	prime_modint(int a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
	prime_modint(long long a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
	static constexpr int mod() { return MOD; }
	mint& operator++() {v++; if(v == MOD)v = 0; return *this;}
	mint& operator--() {if(v == 0)v = MOD; v--; return *this;}
	mint operator++(int) { mint result = *this; ++*this; return result; }
	mint operator--(int) { mint result = *this; --*this; return result; }
	mint& operator+=(const mint& rhs) { v += rhs.v; if(v >= MOD) v -= MOD; return *this; }
	mint& operator-=(const mint& rhs) { if(v < rhs.v) v += MOD; v -= rhs.v; return *this; }
	mint& operator*=(const mint& rhs) {
		v = (unsigned int)((unsigned long long)(v) * rhs.v % MOD);
		return *this;
	}
	mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
	mint operator+() const { return *this; }
	mint operator-() const { return mint() - *this; }
	mint pow(long long n) const {
		assert(0 <= n);
		mint r = 1, x = *this;
		while (n) {
			if (n & 1) r *= x;
			x *= x;
			n >>= 1;
		}
		return r;
	}
	mint inv() const { assert(v); return pow(MOD - 2); }
	friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
	friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
	friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
	friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
	friend bool operator==(const mint& lhs, const mint& rhs) { return (lhs.v == rhs.v); }
	friend bool operator!=(const mint& lhs, const mint& rhs) { return (lhs.v != rhs.v); }
	friend std::ostream& operator << (std::ostream &os, const mint& rhs) noexcept { return os << rhs.v; }
};
//using mint = prime_modint<1000000007>;
using mint = prime_modint<998244353>;

//enumeration<mint> enu(200000);のように宣言する
template<class T> struct enumeration{
    int N;
    vector<T> fact, inv;
    enumeration() : N(0), fact(1, 1), inv(1, 1) {}
    enumeration(int _n) : N(_n), fact(_n + 1), inv(_n + 1) {
        fact[0] = 1;
        for(int i = 1; i <= N; i++) fact[i] = fact[i - 1] * i;
        inv[N] = T(1) / fact[N];
        for(int i = N; i >= 1; i--) inv[i - 1] = inv[i] * i;
    }
    void expand(int lim){
        fact.resize(lim + 1);
        inv.resize(lim + 1);
        for(int i = N + 1; i <= lim; i++) fact[i] = i * fact[i - 1];
        inv[lim] = T(1) / fact[lim];
        for(int i = lim; i >= N + 2; i--) inv[i - 1] = i * inv[i];
        N = lim;
    }
    T Per(int n, int k){
        if(k > n) return 0;
        if(n > N) expand(n);
        return fact[n] * inv[n - k];
    }
    T C(int n, int k){
        if(n < 0 || k < 0 || k > n) return 0;
        if(n > N) expand(n);
        return fact[n] * inv[n - k] * inv[k];
    }
    T H(int n, int k){
        if(n ==0 && k == 0) return 1;
        if(n <= 0 || k < 0) return 0;
        return C(n + k - 1, k);
    }
};

template <class T, size_t N> struct Matrix {
    std::array<std::array<T, N>, N> A{};
    Matrix() {}
    Matrix(const std::array<std::array<T, N>, N> &M) : A(M){}
    Matrix(const std::vector<std::vector<T>> &M)  {
        for(size_t i = 0; i < N; i++){
            for(size_t j = 0; j < N; j++){
                A[i][j] = M[i][j];
            }
        }
    }
    const std::array<T, N>& operator[](int i) const { return A[i]; }
    std::array<T, N>& operator[](int i) { return A[i]; }

    Matrix& operator+=(const Matrix& rhs) {
        for(size_t i = 0; i < N; i++){
            for(size_t j = 0; j < N; j++){
                A[i][j] += rhs[i][j];
            }
        }
        return *this;
    }
    Matrix& operator-=(const Matrix& rhs) {
        for(size_t i = 0; i < N; i++){
            for(size_t j = 0; j < N; j++){
                A[i][j] -= rhs[i][j];
            }
        }
        return *this;
    }
    Matrix& operator*=(const Matrix& rhs) {
        std::array<std::array<T, N>, N> res{};
        for(size_t i = 0; i < N; i++){
            for(size_t j = 0; j < N; j++){
                for(size_t k = 0; k < N; k++){
                    res[i][j] += A[i][k] * rhs[k][j];
                }
            }
        }
        swap(A, res);
        return *this;
    }
    Matrix& operator+() const { return *this; }
    Matrix& operator-() const { return Matrix() - *this; }
    friend Matrix operator+(const Matrix& lhs, const Matrix& rhs) {
        return Matrix(lhs) += rhs;
    }
    friend Matrix operator-(const Matrix& lhs, const Matrix& rhs) {
        return Matrix(lhs) -= rhs;
    }
    friend Matrix operator*(const Matrix& lhs, const Matrix& rhs) {
        return Matrix(lhs) *= rhs;
    }
    friend bool operator==(const Matrix& lhs, const Matrix& rhs) {
        return (lhs.A == rhs.A);
    }
    friend bool operator!=(const Matrix& lhs, const Matrix& rhs) {
        return (lhs.A != rhs.A);
    }
    Matrix pow(long long v){
        Matrix res, temp = A;
        for(size_t i = 0; i < N; i++)res[i][i] = 1;
        while(v){
            if(v & 1)res *= temp;
            temp *= temp;
            v >>= 1;
        }
        return res;
    }
    friend std::ostream& operator << (std::ostream &os, const Matrix& rhs) noexcept {
        for(size_t i = 0; i < N; i++){
            if(i) os << '\n';
            for(size_t j = 0; j < N; j++){
                os << (j ? " " : "") << rhs[i][j];
            }
        }
        return os;
    }
};

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
	ll n, k;
	cin >> n >> k;
	Matrix<mint, 102> Mt;
	enumeration<mint> enu(1000);
	for(int i = 0; i <= k; i++){
		// F2**(i) * F1**(k-i) を求める
		for(int j = 0; j <= i; j++){
			// F1**(j) * F0**(i-j) からの寄与
			Mt[j + k - i][i] += enu.C(i, j);
		}
	}
	Mt[k][101] = Mt[101][101] = 1;
	auto B = Mt.pow(n);
	// cout << B << '\n';
	mint ans = B[k][101];
	cout << ans << '\n';
}
0