結果
| 問題 |
No.2883 K-powered Sum of Fibonacci
|
| コンテスト | |
| ユーザー |
PNJ
|
| 提出日時 | 2024-09-08 17:50:33 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 156 ms / 3,000 ms |
| コード長 | 7,461 bytes |
| コンパイル時間 | 552 ms |
| コンパイル使用メモリ | 82,248 KB |
| 実行使用メモリ | 77,512 KB |
| 最終ジャッジ日時 | 2024-09-08 17:50:39 |
| 合計ジャッジ時間 | 5,804 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
mod = 998244353
NTT_friend = [120586241,167772161,469762049,754974721,880803841,924844033,943718401,998244353,1045430273,1051721729,1053818881]
NTT_dict = {}
for i in range(len(NTT_friend)):
NTT_dict[NTT_friend[i]] = i
NTT_info = [[20,74066978],[25,17],[26,30],[24,362],[23,211],[21,44009197],[22,663003469],[23,31],[20,363],[20,330],[20,2789]]
def popcount(n):
c=(n&0x5555555555555555)+((n>>1)&0x5555555555555555)
c=(c&0x3333333333333333)+((c>>2)&0x3333333333333333)
c=(c&0x0f0f0f0f0f0f0f0f)+((c>>4)&0x0f0f0f0f0f0f0f0f)
c=(c&0x00ff00ff00ff00ff)+((c>>8)&0x00ff00ff00ff00ff)
c=(c&0x0000ffff0000ffff)+((c>>16)&0x0000ffff0000ffff)
c=(c&0x00000000ffffffff)+((c>>32)&0x00000000ffffffff)
return c
def topbit(n):
h = n.bit_length()
h -= 1
return h
def prepared_fft(mod = 998244353):
rank2 = NTT_info[NTT_dict[mod]][0]
root,iroot = [0] * 30,[0] * 30
rate2,irate2= [0] * 30,[0] * 30
rate3,irate3= [0] * 30,[0] * 30
root[rank2] = NTT_info[NTT_dict[mod]][1]
iroot[rank2] = pow(root[rank2],mod - 2,mod)
for i in range(rank2-1,-1,-1):
root[i] = root[i+1] * root[i+1] % mod
iroot[i] = iroot[i+1] * iroot[i+1] % mod
prod,iprod = 1,1
for i in range(rank2-1):
rate2[i] = root[i + 2] * prod % mod
irate2[i] = iroot[i + 2] * iprod % mod
prod = prod * iroot[i + 2] % mod
iprod = iprod * root[i + 2] % mod
prod,iprod = 1,1
for i in range(rank2-2):
rate3[i] = root[i + 3] * prod % mod
irate3[i] = iroot[i + 3] * iprod % mod
prod = prod * iroot[i + 3] % mod
iprod = iprod * root[i + 3] % mod
return root,iroot,rate2,irate2,rate3,irate3
root,iroot,rate2,irate2,rate3,irate3 = prepared_fft()
def ntt(a):
n = len(a)
h = topbit(n)
assert (n == 1 << h)
le = 0
while le < h:
if h - le == 1:
p = 1 << (h - le - 1)
rot = 1
for s in range(1 << le):
offset = s << (h - le)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p] * rot % mod
a[i + offset] = (l + r) % mod
a[i + offset + p] = (l - r) % mod
rot = rot * rate2[topbit(~s & -~s)] % mod
le += 1
else:
p = 1 << (h - le - 2)
rot,imag = 1,root[2]
for s in range(1 << le):
rot2 = rot * rot % mod
rot3 = rot2 * rot % mod
offset = s << (h - le)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p] * rot
a2 = a[i + offset + p * 2] * rot2
a3 = a[i + offset + p * 3] * rot3
a1na3imag = (a1 - a3) % mod * imag
a[i + offset] = (a0 + a2 + a1 + a3) % mod
a[i + offset + p] = (a0 + a2 - a1 - a3) % mod
a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % mod
a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % mod
rot = rot * rate3[topbit(~s & -~s)] % mod
le += 2
def intt(a):
n = len(a)
h = topbit(n)
assert (n == 1 << h)
coef = pow(n,mod - 2,mod)
for i in range(n):
a[i] = a[i] * coef % mod
le = h
while le:
if le == 1:
p = 1 << (h - le)
irot = 1
for s in range(1 << (le - 1)):
offset = s << (h - le + 1)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p]
a[i + offset] = (l + r) % mod
a[i + offset + p] = (l - r) * irot % mod
irot = irot * irate2[topbit(~s & -~s)] % mod
le -= 1
else:
p = 1 << (h - le)
irot,iimag = 1,iroot[2]
for s in range(1 << (le - 2)):
irot2 = irot * irot % mod
irot3 = irot2 * irot % mod
offset = s << (h - le + 2)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p]
a2 = a[i + offset + p * 2]
a3 = a[i + offset + p * 3]
a2na3iimag = (a2 - a3) * iimag % mod
a[i + offset] = (a0 + a1 + a2 + a3) % mod
a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % mod
a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % mod
a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % mod
irot *= irate3[topbit(~s & -~s)]
irot %= mod
le -= 2
def convolute_naive(a,b):
res = [0] * (len(a) + len(b) - 1)
for i in range(len(a)):
for j in range(len(b)):
res[i+j] = (res[i+j] + a[i] * b[j] % mod) % mod
return res
def convolute(a,b):
s = a[:]
t = b[:]
n = len(s)
m = len(t)
if min(n,m) <= 60:
return convolute_naive(s,t)
le = 1
while le < n + m - 1:
le *= 2
s += [0] * (le - n)
t += [0] * (le - m)
ntt(s)
ntt(t)
for i in range(le):
s[i] = s[i] * t[i] % mod
intt(s)
s = s[:n + m - 1]
return s
def fps_inv(f,deg = -1):
assert (f[0] != 0)
if deg == -1:
deg = len(f)
res = [0] * deg
res[0] = pow(f[0],mod-2,mod)
d = 1
while d < deg:
a = [0] * (d << 1)
tmp = min(len(f),d << 1)
a[:tmp] = f[:tmp]
b = [0] * (d << 1)
b[:d] = res[:d]
ntt(a)
ntt(b)
for i in range(d << 1):
a[i] = a[i] * b[i] % mod
intt(a)
a[:d] = [0] * d
ntt(a)
for i in range(d << 1):
a[i] = a[i] * b[i] % mod
intt(a)
for j in range(d,min(d << 1,deg)):
if a[j]:
res[j] = mod - a[j]
else:
res[j] = 0
d <<= 1
return res
def fps_div(f,g):
n,m = len(f),len(g)
if n < m:
return [],f
rev_f = f[:]
rev_f = rev_f[::-1]
rev_g = g[:]
rev_g = rev_g[::-1]
rev_q = convolute(rev_f,fps_inv(rev_g,n-m+1))[:n-m+1]
q = rev_q[:]
q = q[::-1]
p = convolute(g,q)
r = f[:]
for i in range(min(len(p),len(r))):
r[i] -= p[i]
r[i] %= mod
while len(r):
if r[-1] != 0:
break
r.pop()
return q,r
def Bostan_Mori(N,P,Q): # P(x) / Q(x)
assert (len(P))
d = len(Q) - 1
n = N
while True:
if n == 0:
return P[0]
QQ = [Q[i] for i in range(d+1)]
for i in range(1,d+1,2):
QQ[i] = mod - QQ[i]
UU = convolute(P,QQ)
U_e = []
U_o = []
for i in range(len(UU)):
if i % 2:
U_o.append(UU[i])
else:
U_e.append(UU[i])
V = convolute(Q,QQ)
Q = [V[2*i] for i in range(d+1)]
if n % 2:
P = U_o[:]
else:
P = U_e[:]
n //= 2
def gauss_jordan(A,b):
n = len(A)
for i in range(n):
pivot = A[i][i]
for j in range(i,n):
A[i][j] = A[i][j] * pow(pivot,-1,mod) % mod
b[i][0] = b[i][0] * pow(pivot,-1,mod) % mod
for j in range(i + 1,n):
pivot = A[j][i]
for k in range(i,n):
A[j][k] = (A[j][k] - pivot * A[i][k] % mod) % mod
b[j][0] = (b[j][0] - b[i][0] * pivot % mod) % mod
for i in range(n):
for j in range(i):
if A[j][i]:
b[j][0] = (b[j][0] - A[j][i] * b[i][0] % mod) % mod
A[j][i] = 0
return A,b
def berlekamp_massey(A):
n = len(A)
B,C = [1],[1]
l,m,p = 0,1,1
for i in range(n):
d = A[i]
for j in range(1,l + 1):
d = (d + C[j] * A[i - j] % mod) % mod
if d == 0:
m += 1
continue
T = C[:]
q = pow(p,-1,mod) * d % mod
while len(C) < len(B) + m:
C.append(0)
for j in range(len(B)):
b = B[j]
C[j + m] = (C[j + m] - q * b % mod) % mod
if 2 * l <= i:
B = T[:]
l,m,p = i + 1 - l,1,d
else:
m += 1
return C
N,K = map(int,input().split())
fib = [1,1]
F = [1,1]
for i in range(2,1000):
fib.append((fib[-1] + fib[-2]) % mod)
F.append(pow(fib[-1],K,mod))
g = berlekamp_massey(F)
f = convolute(F,g)[:len(g) - 1]
g = convolute(g,[1,mod - 1])
print(Bostan_Mori(N - 1,f,g))
PNJ