結果
| 問題 | No.2883 K-powered Sum of Fibonacci |
| コンテスト | |
| ユーザー |
nonon
|
| 提出日時 | 2024-09-08 21:30:53 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 6 ms / 3,000 ms |
| コード長 | 10,136 bytes |
| コンパイル時間 | 2,955 ms |
| コンパイル使用メモリ | 215,276 KB |
| 最終ジャッジ日時 | 2025-02-24 06:00:09 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
template<long long MOD>
struct modint {
modint() : x(0) {}
modint(long long v) : x(v % MOD) {
if (x < 0) x += MOD;
}
long long x;
long long val() const { return x; }
static constexpr long long mod() noexcept { return MOD; }
friend modint operator+(modint a, modint b) { return a.x + b.x; }
friend modint operator-(modint a, modint b) { return a.x - b.x; }
friend modint operator*(modint a, modint b) { return a.x * b.x; }
friend modint operator/(modint a, modint b) { return a.x * b.inv(); }
friend modint operator+=(modint &a, modint b) { return a = a + b; }
friend modint operator-=(modint &a, modint b) { return a = a - b; }
friend modint operator*=(modint &a, modint b) { return a = a * b; }
friend modint operator/=(modint &a, modint b) { return a = a / b; }
friend bool operator==(modint a, modint b) {return a.x == b.x; }
friend bool operator!=(modint a, modint b) {return a.x != b.x; }
modint operator+() const { return *this; }
modint operator-() const { return modint() - *this; }
modint pow(long long k) const {
modint a = x, res = 1;
while (k > 0) {
if (k & 1) res *= a;
a *= a;
k >>= 1;
}
return res;
}
modint inv() const {
long long a = x, b = MOD;
long long u = 1, v = 0;
while (b > 0) {
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return u;
}
modint& operator++() {
x++;
if (x == MOD ) x = 0;
return *this;
}
modint& operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
modint operator++(int) {
modint res = *this;
++*this;
return res;
}
modint operator--(int) {
modint res = *this;
--*this;
return res;
}
};
template<typename mint>
void ntt(vector<mint> &f, bool inv = false) {
const int mod = mint::mod();
int n = f.size();
mint r = 3; // mod が 998244353 でないなら適切に変更すること
if (inv) r = r.inv();
vector<mint> g(n);
for (int i = n / 2; i > 0; i >>= 1) {
mint z = r.pow( (mod - 1) / (n / i) );
mint w = 1;
for (int j = 0; j < n; j += i << 1) {
for (int k = 0; k < i; k++) {
f[i + j + k] *= w;
g[0 / 2 + j / 2 + k] = f[j + k] + f[i + j + k];
g[n / 2 + j / 2 + k] = f[j + k] - f[i + j + k];
}
w *= z;
}
swap(f, g);
}
if (inv) {
mint inv = mint(n).inv();
for (mint &a : f) a *= inv;
}
}
template<typename mint>
vector<mint> convolution(vector<mint> f, vector<mint> g, int d = -1) {
int n = f.size(), m = g.size();
if (n == 0 || m == 0) return {};
int sz = 1;
while (sz < n + m - 1) sz <<= 1;
f.resize(sz); ntt(f);
g.resize(sz); ntt(g);
for (int i = 0; i < sz; i++) f[i] *= g[i];
ntt(f, true);
if (d == -1) d = n + m - 1;
f.resize(d);
return f;
}
#include <cassert>
template<typename mint>
struct Formal_Power_Series : vector<mint> {
using FPS = Formal_Power_Series;
using vector<mint>::vector;
FPS& operator*=(mint r) {
for (mint &x : *this) x *= r;
return *this;
}
FPS& operator/=(mint r) {
mint invr = r.inv();
(*this) *= invr;
return *this;
}
FPS operator*(mint r) const { return FPS(*this) *= r; }
FPS operator/(mint r) const { return FPS(*this) /= r; }
FPS& operator+=(const FPS &f) {
if (this->size() < f.size()) this->resize(f.size());
for (int i = 0; i < f.size(); i++) (*this)[i] += f[i];
return *this;
}
FPS& operator-=(const FPS &f) {
if (this->size() < f.size()) this->resize(f.size());
for (int i = 0; i < f.size(); i++) (*this)[i] -= f[i];
return *this;
}
FPS& operator*=(const FPS &f) {
vector<mint> s(this->begin(), this->end());
vector<mint> t(f.begin(), f.end());
s = convolution(s, t);
this->resize(s.size());
for (int i = 0; i < s.size(); i++) {
(*this)[i] = s[i];
}
return *this;
}
FPS& operator/=(const FPS &f) {
*this *= f.inv();
return *this;
}
FPS& operator%=(const FPS& f) {
*this -= this->div(f) * f;
this->shrink();
return *this;
}
FPS operator+(const FPS &f) const { return FPS(*this) += f; }
FPS operator-(const FPS &f) const { return FPS(*this) -= f; }
FPS operator*(const FPS &f) const { return FPS(*this) *= f; }
FPS operator/(const FPS &f) const { return FPS(*this) /= f; }
FPS operator%(const FPS &f) const { return FPS(*this) %= f; }
FPS operator-() const { return FPS{} - *this; }
FPS div(FPS f) {
if (this->size() < f.size()) return FPS{};
int n = this->size() - f.size() + 1;
return (rev().pre(n) * f.rev().inv()).pre(n).rev(n);
}
FPS pre(int n) {
n = min(n, int(this->size()));
return FPS(this->begin(), this->begin() + n);
}
FPS rev(int n = -1) {
FPS f(*this);
if (n != -1) f.resize(n);
reverse(f.begin(), f.end());
return f;
}
void shrink() {
while (this->size() && this->back() == mint(0)) {
this->pop_back();
}
}
FPS dot(FPS f) {
int n = min(this->size(), f.size());
FPS g(n);
for (int i = 0; i < n; i++) {
g[i] = (*this)[i] * f[i];
}
return g;
}
FPS diff() {
int n = this->size();
if (n == 0) return FPS{};
FPS f(n - 1);
for (int i = 1; i < n; i++) {
f[i - 1] = (*this)[i] * i;
}
return f;
}
FPS integral() {
int n = this->size();
FPS f(n + 1);
for (int i = 0; i < n; i++) {
f[i + 1] = (*this)[i] / (i + 1);
}
return f;
}
FPS inv() {
int n = this->size();
FPS f(n);
f[0] = (*this)[0].inv();
for (int d = 1; d < n; d *= 2) {
FPS s(2 * d), t(2 * d);
for (int i = 0; i < min(n, 2 * d); i++) s[i] = (*this)[i];
for (int i = 0; i < d; i++) t[i] = f[i];
ntt(s);
ntt(t);
s = s.dot(t);
ntt(s, true);
for (int i = 0; i < d; i++) s[i] = 0;
ntt(s);
s = s.dot(t);
ntt(s, true);
for (int i = d; i < min(n, 2 * d); i++) f[i] -= s[i];
}
return f;
}
FPS exp() {
int n = this->size();
FPS f(1, 1);
for (int d = 1; d < n; d *= 2) {
FPS g = pre(2 * d);
g[0] += 1;
f.resize(2 * d);
g -= f.log();
f *= g;
f.resize(2 * d);
}
f.resize(n);
return f;
}
FPS log() {
int n = this->size();
return (diff() * inv()).pre(n - 1).integral();
}
FPS pow(long long k) {
int n = this->size();
if (k == 0) {
FPS f(n, 0);
f[0] = 1;
return f;
}
int c = 0;
while (c < n && (*this)[c] == 0) c++;
if (c > (n - 1) / k) return FPS(n, 0);
FPS f(*this);
for (int i = 0; i + c < n; i++) f[i] = (*this)[i + c];
f = ((f / f[0]).log() * k).exp() * f[0].pow(k);
FPS g(n);
for (int i = 0; i + k * c < n; i++) g[i + k * c] = f[i];
return g;
}
};
using mint = modint<998244353>;
using FPS = Formal_Power_Series<mint>;
vector<mint> Berlekamp_Massey(const vector<mint> &a) {
int n = a.size();
vector<mint> b = {1}, c = {1};
mint y = 1;
for (int d = 1; d <= n; d++) {
int k = b.size(), l = c.size();
mint x = 0;
for (int i = 0; i < l; i++) {
x += c[i] * a[d - l + i];
}
b.push_back(0);
k++;
if (x == 0) continue;
mint buf = x / y;
if (l < k) {
vector<mint> tmp = c;
c.insert(c.begin(), k - l, 0);
for (int i = 0; i < k; i++) {
c[k - i - 1] -= buf * b[k - i -1];
}
b = tmp;
y = x;
} else {
for (int i = 0; i < k; i++) {
c[l - i - 1] -= buf * b[k - i - 1];
}
}
}
reverse(c.begin(), c.end());
for (mint &x : c) x = -x;
return c;
}
mint Bostan_Mori(FPS p, FPS q, long long k) {
mint res = 0;
if (p.size() >= q.size()) {
FPS r = p.div(q);
p -= q * r;
p.shrink();
if (k < r.size()) res += r[k];
}
if (p.empty()) return res;
p.resize( q.size() - 1 );
auto sub = [&](const FPS &f, bool odd = 0) -> FPS {
int n = f.size();
if (!odd) n++;
FPS g(n / 2);
for (int i = odd; i < f.size(); i += 2) g[i / 2] = f[i];
return g;
};
while (k) {
FPS q2 = q;
for (int i = 1; i < q2.size(); i += 2) q2[i] = -q2[i];
p = sub(p * q2, k & 1);
q = sub(q * q2);
k /= 2;
}
return res + p[0];
}
mint linear_recurrence(FPS a, FPS c, long long k) {
FPS c2(c.size() + 1);
for (int i = 0; i < c.size(); i++) c2[i + 1] = -c[i];
c2[0] = 1;
return Bostan_Mori((a * c2).pre(a.size()), c2, k);
}
mint BMBM(vector<mint> x, long long k) {
auto tmp = Berlekamp_Massey(x);
int n = tmp.size() - 1;
FPS a(n), c(n);
for (int i = 0; i < n; i++) {
a[i] = x[i];
c[i] = tmp[i + 1];
}
return linear_recurrence(a, c, k);
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
long long N;
int K;
cin >> N >> K;
int M = 4 * K;
vector<mint> F(M), A(M);
F[0] = F[1] = 1;
A[0] = 1, A[1] = 2;
for (int i = 2; i < M; i++) {
F[i] = F[i - 1] + F[i - 2];
A[i] = A[i - 1] + F[i].pow(K);
}
cout << BMBM(A, N - 1).val() << endl;
}
nonon