結果
問題 | No.2883 K-powered Sum of Fibonacci |
ユーザー | SnowBeenDiding |
提出日時 | 2024-09-09 03:55:35 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 503 ms / 3,000 ms |
コード長 | 5,019 bytes |
コンパイル時間 | 5,734 ms |
コンパイル使用メモリ | 314,192 KB |
実行使用メモリ | 42,564 KB |
最終ジャッジ日時 | 2024-09-09 03:55:51 |
合計ジャッジ時間 | 15,039 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 60 ms
42,260 KB |
testcase_01 | AC | 60 ms
42,232 KB |
testcase_02 | AC | 74 ms
42,380 KB |
testcase_03 | AC | 58 ms
42,336 KB |
testcase_04 | AC | 60 ms
42,284 KB |
testcase_05 | AC | 84 ms
42,348 KB |
testcase_06 | AC | 60 ms
42,380 KB |
testcase_07 | AC | 160 ms
42,412 KB |
testcase_08 | AC | 78 ms
42,292 KB |
testcase_09 | AC | 68 ms
42,372 KB |
testcase_10 | AC | 68 ms
42,376 KB |
testcase_11 | AC | 286 ms
42,348 KB |
testcase_12 | AC | 80 ms
42,332 KB |
testcase_13 | AC | 68 ms
42,288 KB |
testcase_14 | AC | 333 ms
42,396 KB |
testcase_15 | AC | 124 ms
42,440 KB |
testcase_16 | AC | 59 ms
42,224 KB |
testcase_17 | AC | 91 ms
42,272 KB |
testcase_18 | AC | 64 ms
42,288 KB |
testcase_19 | AC | 96 ms
42,396 KB |
testcase_20 | AC | 436 ms
42,564 KB |
testcase_21 | AC | 379 ms
42,412 KB |
testcase_22 | AC | 427 ms
42,352 KB |
testcase_23 | AC | 360 ms
42,392 KB |
testcase_24 | AC | 339 ms
42,512 KB |
testcase_25 | AC | 448 ms
42,512 KB |
testcase_26 | AC | 490 ms
42,564 KB |
testcase_27 | AC | 452 ms
42,400 KB |
testcase_28 | AC | 456 ms
42,344 KB |
testcase_29 | AC | 503 ms
42,416 KB |
testcase_30 | AC | 60 ms
42,352 KB |
testcase_31 | AC | 59 ms
42,360 KB |
testcase_32 | AC | 60 ms
42,384 KB |
testcase_33 | AC | 69 ms
42,412 KB |
testcase_34 | AC | 59 ms
42,396 KB |
testcase_35 | AC | 61 ms
42,224 KB |
testcase_36 | AC | 59 ms
42,332 KB |
testcase_37 | AC | 60 ms
42,468 KB |
testcase_38 | AC | 59 ms
42,328 KB |
testcase_39 | AC | 59 ms
42,388 KB |
testcase_40 | AC | 60 ms
42,264 KB |
testcase_41 | AC | 60 ms
42,432 KB |
testcase_42 | AC | 477 ms
42,488 KB |
ソースコード
#include <atcoder/all> #include <bits/stdc++.h> #define rep(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++) using namespace atcoder; using namespace std; typedef long long ll; using mint = modint998244353; struct Comb { vector<mint> fact, ifact; int MAX_COM; Comb() {} Comb(int n) { MAX_COM = n; // ここでMAX入力を調整 init(998244353, MAX_COM); } void init(long long MOD, long long MAX_COM) { int n = MAX_COM; assert(n < MOD); fact = vector<mint>(n + 1); ifact = vector<mint>(n + 1); fact[0] = 1; for (int i = 1; i <= n; ++i) fact[i] = fact[i - 1] * i; ifact[n] = fact[n].inv(); for (int i = n; i >= 1; --i) ifact[i - 1] = ifact[i] * i; } mint operator()(long long n, long long k) { if (k < 0 || k > n) return 0; return fact[n] * ifact[k] * ifact[n - k]; } }; Comb comb(5000010); template <class T> struct Matrix { vector<vector<T>> A; Matrix() {} Matrix(size_t n, size_t m) : A(n, std::vector<T>(m, zero())) {} Matrix(size_t n) : A(n, std::vector<T>(n, zero())) {}; T zero() { return (T(0)); } size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector<T> &operator[](int k) const { return (A.at(k)); } inline vector<T> &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n, vector<T>(m, zero())); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } bool operator==(const Matrix &B) const { size_t n = height(), m = width(); if (n != B.height() || m != B.width()) return false; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) if ((*this)[i][j] != B[i][j]) return false; return true; } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "\n" : " "); } } return (os); } T determinant() { // O(n^3) Matrix B(*this); assert(width() == height()); T ret = 1; for (int i = 0; i < width(); i++) { int idx = -1; for (int j = i; j < width(); j++) { if (B[j][i] != 0) idx = j; } if (idx == -1) return (0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for (int j = 0; j < width(); j++) { B[i][j] /= vv; } for (int j = i + 1; j < width(); j++) { T a = B[j][i]; for (int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; void solve(ll n, int k) { Matrix<mint> C(k + 2); rep(i, 0, k + 1) rep(j, 0, k + 1) C[i][j] = comb(k - i, k - j - i); C[k + 1][k + 1] = 1; C[k + 1][0] = 1; C ^= n - 1; mint ans = 0; rep(i, 0, k + 2) ans += C[k + 1][i]; cout << ans.val() << endl; } int main() { ll n; int k; cin >> n >> k; solve(n, k); }