結果

問題 No.2933 Range ROT Query
ユーザー loop0919loop0919
提出日時 2024-09-09 18:30:53
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,558 ms / 3,000 ms
コード長 7,192 bytes
コンパイル時間 185 ms
コンパイル使用メモリ 82,048 KB
実行使用メモリ 97,356 KB
最終ジャッジ日時 2024-10-02 00:30:01
合計ジャッジ時間 52,695 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 54 ms
54,144 KB
testcase_01 AC 42 ms
53,888 KB
testcase_02 AC 42 ms
53,632 KB
testcase_03 AC 42 ms
53,888 KB
testcase_04 AC 46 ms
55,552 KB
testcase_05 AC 45 ms
54,912 KB
testcase_06 AC 52 ms
61,184 KB
testcase_07 AC 48 ms
55,808 KB
testcase_08 AC 42 ms
53,504 KB
testcase_09 AC 44 ms
54,016 KB
testcase_10 AC 54 ms
61,824 KB
testcase_11 AC 45 ms
55,040 KB
testcase_12 AC 1,344 ms
96,820 KB
testcase_13 AC 1,348 ms
95,696 KB
testcase_14 AC 1,387 ms
97,076 KB
testcase_15 AC 1,348 ms
95,368 KB
testcase_16 AC 1,419 ms
95,944 KB
testcase_17 AC 1,487 ms
97,356 KB
testcase_18 AC 1,529 ms
96,812 KB
testcase_19 AC 1,442 ms
96,628 KB
testcase_20 AC 1,558 ms
96,188 KB
testcase_21 AC 787 ms
95,496 KB
testcase_22 AC 804 ms
95,628 KB
testcase_23 AC 806 ms
95,756 KB
testcase_24 AC 816 ms
95,372 KB
testcase_25 AC 767 ms
95,632 KB
testcase_26 AC 1,379 ms
95,372 KB
testcase_27 AC 1,412 ms
95,500 KB
testcase_28 AC 1,385 ms
95,244 KB
testcase_29 AC 1,393 ms
95,112 KB
testcase_30 AC 1,357 ms
95,232 KB
testcase_31 AC 1,356 ms
95,368 KB
testcase_32 AC 1,177 ms
93,756 KB
testcase_33 AC 1,299 ms
89,892 KB
testcase_34 AC 1,322 ms
91,248 KB
testcase_35 AC 1,088 ms
90,008 KB
testcase_36 AC 1,338 ms
91,520 KB
testcase_37 AC 1,018 ms
90,268 KB
testcase_38 AC 998 ms
93,572 KB
testcase_39 AC 1,214 ms
90,572 KB
testcase_40 AC 1,228 ms
91,996 KB
testcase_41 AC 1,318 ms
94,808 KB
testcase_42 AC 1,058 ms
89,032 KB
testcase_43 AC 1,031 ms
88,044 KB
testcase_44 AC 1,223 ms
89,272 KB
testcase_45 AC 1,267 ms
93,024 KB
testcase_46 AC 1,213 ms
88,588 KB
testcase_47 AC 1,083 ms
87,272 KB
testcase_48 AC 924 ms
92,260 KB
testcase_49 AC 1,068 ms
92,824 KB
testcase_50 AC 965 ms
87,396 KB
testcase_51 AC 1,098 ms
90,852 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

sigma = 26


# 遅延セグメント木
class lazy_segtree:
    def update(self, k):
        self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])

    def all_apply(self, k, f):
        self.d[k] = self.mapping(f, self.d[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])

    def push(self, k):
        self.all_apply(2 * k, self.lz[k])
        self.all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.identity

    def __init__(self, V, OP, E, MAPPING, COMPOSITION, ID):
        self.n = len(V)
        self.log = (self.n - 1).bit_length()
        self.size = 1 << self.log
        self.d = [E for i in range(2 * self.size)]
        self.lz = [ID for i in range(self.size)]
        self.e = E
        self.op = OP
        self.mapping = MAPPING
        self.composition = COMPOSITION
        self.identity = ID
        for i in range(self.n):
            self.d[self.size + i] = V[i]
        for i in range(self.size - 1, 0, -1):
            self.update(i)

    def set(self, p, x):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = x
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def get(self, p):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        return self.d[p]

    def prod(self, l, r):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return self.e
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push(r >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.d[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.d[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)

    def all_prod(self):
        return self.d[1]

    def apply_point(self, p, f):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = self.mapping(f, self.d[p])
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def apply(self, l, r, f):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self.all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self.all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if ((l >> i) << i) != l:
                self.update(l >> i)
            if ((r >> i) << i) != r:
                self.update((r - 1) >> i)

    def max_right(self, l, g):
        assert 0 <= l and l <= self.n
        assert g(self.e)
        if l == self.n:
            return self.n
        l += self.size
        for i in range(self.log, 0, -1):
            self.push(l >> i)
        sm = self.e
        while 1:
            while l % 2 == 0:
                l >>= 1
            if not (g(self.op(sm, self.d[l]))):
                while l < self.size:
                    self.push(l)
                    l = 2 * l
                    if g(self.op(sm, self.d[l])):
                        sm = self.op(sm, self.d[l])
                        l += 1
                return l - self.size
            sm = self.op(sm, self.d[l])
            l += 1
            if (l & -l) == l:
                break
        return self.n

    def min_left(self, r, g):
        assert 0 <= r and r <= self.n
        assert g(self.e)
        if r == 0:
            return 0
        r += self.size
        for i in range(self.log, 0, -1):
            self.push((r - 1) >> i)
        sm = self.e
        while 1:
            r -= 1
            while r > 1 and (r % 2):
                r >>= 1
            if not (g(self.op(self.d[r], sm))):
                while r < self.size:
                    self.push(r)
                    r = 2 * r + 1
                    if g(self.op(self.d[r], sm)):
                        sm = self.op(self.d[r], sm)
                        r -= 1
                return r + 1 - self.size
            sm = self.op(self.d[r], sm)
            if (r & -r) == r:
                break
        return 0


# Fenwick木
class fenwick_tree:
    n = 1
    data = [0 for i in range(n)]

    def __init__(self, N):
        self.n = N
        self.data = [0 for i in range(N)]

    def add(self, p, x):
        assert 0 <= p < self.n, "0<=p<n,p={0},n={1}".format(p, self.n)
        p += 1
        while p <= self.n:
            self.data[p - 1] += x
            p += p & -p

    def sum(self, l, r):
        assert 0 <= l and l <= r and r <= self.n, "0<=l<=r<=n,l={0},r={1},n={2}".format(l, r, self.n)
        return self.sum0(r) - self.sum0(l)

    def sum0(self, r):
        s = 0
        while r > 0:
            s += self.data[r - 1]
            r -= r & -r
        return s


emptyset = -1
wildcard = 9999


def op(x, y):
    if x == emptyset or y == emptyset:
        return emptyset

    if x == wildcard:
        return y

    if y == wildcard:
        return x

    if x == y:
        return x
    else:
        return emptyset


e = wildcard


def mapping(f, x):
    if x == emptyset or x == wildcard:
        return x

    return (x + f) % sigma


def composition(f, g):
    return (f + g) % sigma


id_ = 0


S = input()
T = input()

diff = []

for s, t in zip(S, T):
    diff.append((ord(s) - ord(t)) % sigma)

seg = lazy_segtree(diff, op, e, mapping, composition, id_)

s_imos = fenwick_tree(len(S) + 1)
t_imos = fenwick_tree(len(T) + 1)

Q = int(input())

for _ in range(Q):
    cmd, *query = list(map(int, input().split()))

    if cmd == 1:
        l, r, x = query

        seg.apply(min(l - 1, len(S), len(T)), min(r, len(S), len(T)), x)
        s_imos.add(l - 1, x)
        s_imos.add(r, -x)

    elif cmd == 2:
        l, r, x = query

        seg.apply(min(l - 1, len(S), len(T)), min(r, len(S), len(T)), -x % sigma)
        t_imos.add(l - 1, x)
        t_imos.add(r, -x)

    else:
        p = query[0]

        idx = seg.max_right(p - 1, lambda x: x == 0 or x == wildcard)

        if idx < min(len(S), len(T)):
            s = (s_imos.sum(0, idx + 1) + ord(S[idx]) - ord("a")) % sigma
            t = (t_imos.sum(0, idx + 1) + ord(T[idx]) - ord("a")) % sigma

            if s > t:
                print("Greater")
            elif s < t:
                print("Lesser")

        else:
            if len(S) > len(T):
                print("Greater")
            elif len(S) < len(T):
                print("Lesser")
            else:
                print("Equals")
0