結果

問題 No.386 貪欲な領主
ユーザー ei1333333
提出日時 2016-07-01 23:28:14
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 166 ms / 2,000 ms
コード長 5,080 bytes
コンパイル時間 2,086 ms
コンパイル使用メモリ 179,568 KB
実行使用メモリ 21,304 KB
最終ジャッジ日時 2024-10-12 19:07:35
合計ジャッジ時間 3,653 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 16
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:172:8: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  172 |   scanf("%d", &N);
      |   ~~~~~^~~~~~~~~~
main.cpp:176:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  176 |     scanf("%d %d", &A, &B);
      |     ~~~~~^~~~~~~~~~~~~~~~~
main.cpp:186:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  186 |     scanf("%d", &U[i]);
      |     ~~~~~^~~~~~~~~~~~~
main.cpp:188:8: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  188 |   scanf("%d", &M);
      |   ~~~~~^~~~~~~~~~
main.cpp:192:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  192 |     scanf("%d %d %d", &A, &B, &C);
      |     ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
vector< vector< int > > graph;
struct BinaryIndexedTree
{
vector< int > data;
BinaryIndexedTree(int sz)
{
data.assign(++sz, 0);
}
int sum(int k)
{
int ret = 0;
for(++k; k > 0; k -= k & -k) ret += data[k];
return(ret);
}
void add(int k, int x)
{
for(++k; k < data.size(); k += k & -k) data[k] += x;
}
};
struct CentroidPathDecomposition
{
struct Centroid
{
int ParIndex, ParDepth, Deep;
vector< int > node;
inline int size()
{
return(node.size());
}
inline int &operator[](int k)
{
return(node[k]);
}
inline pair< int, int > Up()
{
return(make_pair(ParIndex, ParDepth));
}
};
vector< int > SubTreeSize, NextPath;
vector< int > TreeIndex, TreeDepth;
vector< Centroid > Centroids;
void BuildSubTreeSize()
{
stack< pair< int, int > > s;
s.push({0, -1});
while(!s.empty()) {
auto p = s.top(); s.pop();
if(~SubTreeSize[p.first]) {
NextPath[p.first] = -1;
for(auto& to : graph[p.first]) {
if(p.second == to) continue;
SubTreeSize[p.first] += SubTreeSize[to];
if(NextPath[p.first] == -1 || SubTreeSize[NextPath[p.first]] < SubTreeSize[to]) {
NextPath[p.first] = to;
}
}
} else {
s.push(p);
SubTreeSize[p.first] = 1;
for(auto& to : graph[p.first]) {
if(p.second != to) s.push({to, p.first});
}
}
}
}
void BuildPath()
{
stack< pair< int, int > > s;
Centroids.push_back((Centroid){-1, -1, 0});
s.push({0, -1});
TreeIndex[0] = 0;
while(!s.empty()) {
auto p = s.top(); s.pop();
TreeDepth[p.first] = Centroids[TreeIndex[p.first]].size();
for(auto& to : graph[p.first]) {
if(p.second != to) {
if(to == NextPath[p.first]) { // Centroid-Path
TreeIndex[to] = TreeIndex[p.first];
} else { // Not Centroid-Path
TreeIndex[to] = Centroids.size();
Centroids.push_back((Centroid){TreeIndex[p.first], TreeDepth[p.first], Centroids[TreeIndex[p.first]].Deep + 1});
}
s.push({to, p.first});
}
}
Centroids[TreeIndex[p.first]].node.push_back(p.first);
}
}
void AddEdge(int x, int y)
{
graph[x].push_back(y);
graph[y].push_back(x);
}
void Build()
{
BuildSubTreeSize();
BuildPath();
}
inline int size()
{
return(Centroids.size());
}
inline pair< int, int > Information(int idx)
{
return(make_pair(TreeIndex[idx], TreeDepth[idx]));
}
inline Centroid &operator[](int k)
{
return(Centroids[k]);
}
inline int LCA(int a, int b) //
{
int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB;
tie(TreeIdxA, TreeDepthA) = Information(a);
tie(TreeIdxB, TreeDepthB) = Information(b);
while(TreeIdxA != TreeIdxB) {
if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) {
tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up();
} else {
tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up();
}
}
if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB);
return(Centroids[TreeIdxA][TreeDepthA]);
}
CentroidPathDecomposition(int SZ)
{
graph.resize(SZ);
SubTreeSize.assign(SZ, -1);
NextPath.resize(SZ);
TreeIndex.resize(SZ);
TreeDepth.resize(SZ);
}
inline void AddPath(int A, int B, int C, vector< BinaryIndexedTree >& bits);
};
inline void CentroidPathDecomposition::AddPath(int A, int B, int C, vector< BinaryIndexedTree >& bits)
{
int TreeIdxA, TreeDepthA, TreeIdxB, TreeDepthB;
tie(TreeIdxA, TreeDepthA) = Information(A);
tie(TreeIdxB, TreeDepthB) = Information(B);
while(TreeIdxA != TreeIdxB) {
if(Centroids[TreeIdxA].Deep > Centroids[TreeIdxB].Deep) {
bits[TreeIdxA].add(0, C);
bits[TreeIdxA].add(TreeDepthA + 1, -C);
tie(TreeIdxA, TreeDepthA) = Centroids[TreeIdxA].Up();
} else {
bits[TreeIdxB].add(0, C);
bits[TreeIdxB].add(TreeDepthB + 1, -C);
tie(TreeIdxB, TreeDepthB) = Centroids[TreeIdxB].Up();
}
}
if(TreeDepthA > TreeDepthB) swap(TreeDepthA, TreeDepthB);
bits[TreeIdxA].add(TreeDepthA, C);
bits[TreeIdxA].add(TreeDepthB + 1, -C);
}
int main()
{
int N, M, U[100000];
scanf("%d", &N);
CentroidPathDecomposition tree(N);
for(int i = 0; i < N - 1; i++) {
int A, B;
scanf("%d %d", &A, &B);
tree.AddEdge(A, B);
}
tree.Build();
vector< BinaryIndexedTree > bits;
for(int i = 0; i < tree.size(); i++) {
bits.push_back(BinaryIndexedTree(tree[i].size() + 2));
}
for(int i = 0; i < N; i++) {
scanf("%d", &U[i]);
}
scanf("%d", &M);
while(M--) {
int A, B, C;
scanf("%d %d %d", &A, &B, &C);
tree.AddPath(A, B, C, bits);
}
long long ret = 0;
for(int i = 0; i < N; i++) {
int idx, depth;
tie(idx, depth) = tree.Information(i);
ret += 1LL * bits[idx].sum(depth) * U[i];
}
printf("%lld\n", ret);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0