結果
問題 | No.2883 K-powered Sum of Fibonacci |
ユーザー | noya2 |
提出日時 | 2024-09-10 19:47:46 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 17 ms / 3,000 ms |
コード長 | 41,947 bytes |
コンパイル時間 | 4,186 ms |
コンパイル使用メモリ | 283,484 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-10 19:47:52 |
合計ジャッジ時間 | 6,292 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 6 ms
6,812 KB |
testcase_01 | AC | 7 ms
6,816 KB |
testcase_02 | AC | 7 ms
6,816 KB |
testcase_03 | AC | 7 ms
6,940 KB |
testcase_04 | AC | 7 ms
6,940 KB |
testcase_05 | AC | 10 ms
6,940 KB |
testcase_06 | AC | 6 ms
6,944 KB |
testcase_07 | AC | 17 ms
6,940 KB |
testcase_08 | AC | 9 ms
6,940 KB |
testcase_09 | AC | 7 ms
6,940 KB |
testcase_10 | AC | 7 ms
6,940 KB |
testcase_11 | AC | 13 ms
6,940 KB |
testcase_12 | AC | 7 ms
6,940 KB |
testcase_13 | AC | 7 ms
6,944 KB |
testcase_14 | AC | 15 ms
6,940 KB |
testcase_15 | AC | 10 ms
6,944 KB |
testcase_16 | AC | 7 ms
6,944 KB |
testcase_17 | AC | 8 ms
6,944 KB |
testcase_18 | AC | 7 ms
6,940 KB |
testcase_19 | AC | 8 ms
6,944 KB |
testcase_20 | AC | 17 ms
6,944 KB |
testcase_21 | AC | 16 ms
6,940 KB |
testcase_22 | AC | 17 ms
6,940 KB |
testcase_23 | AC | 15 ms
6,940 KB |
testcase_24 | AC | 15 ms
6,944 KB |
testcase_25 | AC | 17 ms
6,940 KB |
testcase_26 | AC | 17 ms
6,944 KB |
testcase_27 | AC | 17 ms
6,944 KB |
testcase_28 | AC | 17 ms
6,944 KB |
testcase_29 | AC | 17 ms
6,944 KB |
testcase_30 | AC | 14 ms
6,940 KB |
testcase_31 | AC | 7 ms
6,940 KB |
testcase_32 | AC | 6 ms
6,944 KB |
testcase_33 | AC | 12 ms
6,940 KB |
testcase_34 | AC | 7 ms
6,944 KB |
testcase_35 | AC | 7 ms
6,944 KB |
testcase_36 | AC | 6 ms
6,944 KB |
testcase_37 | AC | 7 ms
6,940 KB |
testcase_38 | AC | 6 ms
6,940 KB |
testcase_39 | AC | 6 ms
6,940 KB |
testcase_40 | AC | 7 ms
6,944 KB |
testcase_41 | AC | 7 ms
6,944 KB |
testcase_42 | AC | 17 ms
6,944 KB |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include<bits/stdc++.h> #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p){ os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p){ is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template<typename T> void out(const vector<vector<T>> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector<int> dx = {0,1,0,-1,1,1,-1,-1}; const vector<int> dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << std::min(n, m); } template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template<typename T> T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0); } template<typename T> T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0); } template<typename T> void uniq(std::vector<T> &v){ std::sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using pil = pair<int,ll>; using pli = pair<ll,int>; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c.cpp" template <typename mint> vector<mint> berlekamp_massey(const vector<mint> &s) { const int N = (int)s.size(); vector<mint> b, c; b.reserve(N + 1); c.reserve(N + 1); b.push_back(mint(1)); c.push_back(mint(1)); mint y = mint(1); for (int ed = 1; ed <= N; ed++) { int l = int(c.size()), m = int(b.size()); mint x = 0; for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i]; b.emplace_back(mint(0)); m++; if (x == mint(0)) continue; mint freq = x / y; if (l < m) { auto tmp = c; c.insert(begin(c), m - l, mint(0)); for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i]; b = tmp; y = x; } else { for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i]; } } reverse(begin(c), end(c)); return c; } #line 2 "/Users/noya2/Desktop/Noya2_library/fps998244353/fps998244353.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" namespace noya2 { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m); constexpr long long primitive_root_constexpr(long long m){ if (m == (1LL << 47) - (1LL << 24) + 1) return 3; return primitive_root_constexpr(static_cast<int>(m)); } } // namespace noya2 #line 6 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" namespace noya2{ struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; unsigned long long x = (unsigned long long)((__uint128_t(z) * im) >> 64); unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; template <int m> struct static_modint { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template<std::signed_integral T> constexpr static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> constexpr static_modint(T v){ _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = is_prime_flag<m>; }; template <int id> struct dynamic_modint { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template<std::signed_integral T> dynamic_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> dynamic_modint(T v){ _v = (unsigned int)(v % umod()); } uint val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = noya2::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> noya2::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; template<typename T> concept Modint = requires (T &a){ T::mod(); a.inv(); a.val(); a.pow(declval<int>()); }; } // namespace noya2 #line 4 "/Users/noya2/Desktop/Noya2_library/fps998244353/fps998244353.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/fps998244353/ntt998244353.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/fps998244353/modint998244353.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/fps998244353/modint998244353.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/fps998244353/modint998244353.hpp" namespace noya2 { template <> struct static_modint<998244353> { using mint = static_modint; public: static constexpr int mod() { return 998244353; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template<std::signed_integral T> constexpr static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> constexpr static_modint(T v){ _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { assert(_v); return pow(umod() - 2); } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } unsigned int _v; static constexpr int primitive_root_constexpr_v = 3; private: static constexpr unsigned int umod() { return 998244353u; } static constexpr bool prime = true; }; } // namespace noya2 #line 4 "/Users/noya2/Desktop/Noya2_library/fps998244353/ntt998244353.hpp" #line 7 "/Users/noya2/Desktop/Noya2_library/fps998244353/ntt998244353.hpp" namespace noya2 { namespace internal { constexpr int FFT_MAX = 23; constexpr unsigned FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U}; constexpr unsigned INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U}; constexpr unsigned FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U}; constexpr unsigned INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U}; } // namespace noya2::internal struct ntt998244353 { using mint = modint998244353; static constexpr unsigned MO = modint998244353::mod(); static constexpr unsigned MO2 = MO * 2; static void ntt(mint *as, int n){ int m = n; if (m >>= 1){ for (int i = 0; i < m; i++){ const unsigned x = as[i + m]._v; as[i + m]._v = as[i]._v + MO - x; as[i]._v += x; } } if (m >>= 1){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + m; i++){ const unsigned x = (prod * as[i + m])._v; as[i + m]._v = as[i]._v + MO - x; as[i]._v += x; } prod *= mint::raw(internal::FFT_RATIOS[__builtin_ctz(++h)]); } } for (; m; ){ if (m >>= 1){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + m; i++){ const unsigned x = (prod * as[i + m])._v; as[i + m]._v = as[i]._v + MO - x; as[i]._v += x; } prod *= mint::raw(internal::FFT_RATIOS[__builtin_ctz(++h)]); } } if (m >>= 1){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + m; i++){ const unsigned x = (prod * as[i + m])._v; as[i]._v = (as[i]._v >= MO2 ? as[i]._v - MO2 : as[i]._v); as[i + m]._v = as[i]._v + MO - x; as[i]._v += x; } prod *= mint::raw(internal::FFT_RATIOS[__builtin_ctz(++h)]); } } } for (int i = 0; i < n; i++){ as[i]._v = (as[i]._v >= MO2 ? as[i]._v - MO2 : as[i]._v); as[i]._v = (as[i]._v >= MO ? as[i]._v - MO : as[i]._v); } } static void intt(mint *as, int n){ int m = 1; if (m < (n >> 1)){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + m; i++){ const unsigned long long y = as[i]._v + MO - as[i + m]._v; as[i]._v += as[i + m]._v; as[i + m]._v = prod._v * y % MO; } prod *= mint::raw(internal::INV_FFT_RATIOS[__builtin_ctz(++h)]); } m <<= 1; } for (; m < (n >> 1); m <<= 1){ mint prod = 1; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)){ for (int i = i0; i < i0 + (m >> 1); i++){ const unsigned long long y = as[i]._v + MO2 - as[i + m]._v; as[i]._v += as[i + m]._v; as[i]._v = (as[i]._v >= MO2 ? as[i]._v - MO2 : as[i]._v); as[i + m]._v = prod._v * y % MO; } for (int i = i0 + (m >> 1); i < i0 + m; i++){ const unsigned long long y = as[i]._v + MO - as[i + m]._v; as[i]._v += as[i + m]._v; as[i + m]._v = prod._v * y % MO; } prod *= mint::raw(internal::INV_FFT_RATIOS[__builtin_ctz(++h)]); } } if (m < n){ for (int i = 0; i < m; i++){ const unsigned y = as[i]._v + MO2 - as[i + m]._v; as[i]._v += as[i + m]._v; as[i + m]._v = y; } } for (int i = 0; i < n; i++){ as[i]._v = (as[i]._v >= MO2 ? as[i]._v - MO2 : as[i]._v); as[i]._v = (as[i]._v >= MO ? as[i]._v - MO : as[i]._v); } } static void ntt(std::vector<mint> &as){ ntt(as.data(), as.size()); } static void intt(std::vector<mint> &as){ intt(as.data(), as.size()); } static void intt_div(std::vector<mint> &as){ intt(as); int n = as.size(); const mint inv_n = mint::raw(n).inv(); for (int i = 0; i < n; i++){ as[i] *= inv_n; } } static std::vector<mint> multiply(std::vector<mint> as, std::vector<mint> bs){ if (as.empty() || bs.empty()) return {}; const int len = as.size() + bs.size() - 1u; if (std::min(as.size(), bs.size()) <= 40u){ std::vector<mint> s(len); for (int i = 0; i < (int)(as.size()); i++){ for (int j = 0; j < (int)(bs.size()); j++){ s[i + j] += as[i] * bs[j]; } } return s; } int n = 1; for (; n < len; n <<= 1) {} if (as.size() == bs.size() && as == bs){ as.resize(n); ntt(as); for (int i = 0; i < n; i++){ as[i] *= as[i]; } } else { as.resize(n); ntt(as); bs.resize(n); ntt(bs); for (int i = 0; i < n; i++){ as[i] *= bs[i]; } } intt_div(as); as.resize(len); return as; } static void ntt_doubling(std::vector<mint> &as){ auto bs = as; intt(bs); mint e = mint::raw(internal::FFT_ROOTS[std::countr_zero(as.size()) + 1]); mint iv = mint::raw(as.size()).inv(); for (auto &x : bs){ x *= iv; iv *= e; } ntt(bs); as.insert(as.end(), bs.begin(), bs.end()); } static void ntt_pick_parity(std::vector<mint> &f, int odd){ int n = f.size() / 2; mint i2 = mint::raw((mint::mod() + 1) >> 1); if (odd == 0){ for (int i = 0; i < n; i++){ f[i] = (f[i * 2] + f[i * 2 + 1]) * i2; } f.resize(n); return ; } mint ie = mint::raw(internal::INV_FFT_ROOTS[std::countr_zero(f.size())]); std::vector<mint> es = {i2}; while ((int)(es.size()) != n){ std::vector<mint> nes(es.size() * 2u); for (int i = 0; i < (int)(es.size()); i++){ nes[i * 2 + 0] = es[i]; nes[i * 2 + 1] = es[i] * ie; } ie *= ie; std::swap(es, nes); } for (int i = 0; i < n; i++){ f[i] = (f[i * 2] - f[i * 2 + 1]) * es[i]; } f.resize(n); } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/math/binomial.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/binomial.hpp" namespace noya2 { template<typename mint> struct binomial { binomial(int len = 300000){ extend(len); } static mint fact(int n){ if (n < 0) return 0; while (n >= (int)_fact.size()) extend(); return _fact[n]; } static mint ifact(int n){ if (n < 0) return 0; while (n >= (int)_fact.size()) extend(); return _ifact[n]; } static mint inv(int n){ return ifact(n) * fact(n-1); } static mint C(int n, int r){ if (!(0 <= r && r <= n)) return 0; return fact(n) * ifact(r) * ifact(n-r); } static mint P(int n, int r){ if (!(0 <= r && r <= n)) return 0; return fact(n) * ifact(n-r); } inline mint operator()(int n, int r) { return C(n, r); } template<class... Cnts> static mint M(const Cnts&... cnts){ return multinomial(0,1,cnts...); } static void initialize(int len = 2){ _fact.clear(); _ifact.clear(); extend(len); } private: static mint multinomial(const int& sum, const mint& div_prod){ if (sum < 0) return 0; return fact(sum) * div_prod; } template<class... Tail> static mint multinomial(const int& sum, const mint& div_prod, const int& n1, const Tail&... tail){ if (n1 < 0) return 0; return multinomial(sum+n1,div_prod*ifact(n1),tail...); } static inline std::vector<mint> _fact, _ifact; static void extend(int len = -1){ if (_fact.empty()){ _fact = _ifact = {1,1}; } int siz = _fact.size(); if (len == -1) len = siz * 2; len = (int)min<long long>(len, mint::mod() - 1); if (len < siz) return ; _fact.resize(len+1), _ifact.resize(len+1); for (int i = siz; i <= len; i++) _fact[i] = _fact[i-1] * i; _ifact[len] = _fact[len].inv(); for (int i = len; i > siz; i--) _ifact[i-1] = _ifact[i] * i; } }; } // namespace noya2 #line 7 "/Users/noya2/Desktop/Noya2_library/fps998244353/fps998244353.hpp" namespace noya2 { // Formal Power Series for modint998244353 struct fps998244353 : std::vector<modint998244353> { using mint = modint998244353; using std::vector<mint>::vector; using std::vector<mint>::operator=; using fps = fps998244353; static inline binomial<mint> bnm; fps998244353 (const std::vector<mint> &init){ (*this) = init; } void shrink(){ while(!(this->empty()) && this->back().val() == 0){ this->pop_back(); } } fps &operator*= (const mint &r){ for (auto &x : *this) x *= r; return *this; } fps &operator/= (const mint &r){ (*this) *= r.inv(); return *this; } fps &operator<<= (const int &d){ this->insert(this->begin(), d, mint(0)); return *this; } fps &operator>>= (const int &d){ if ((int)(this->size()) <= d) this->clear(); else this->erase(this->begin(),this->begin() + d); return *this; } fps &operator+= (const fps &r){ if (this->size() < r.size()) this->resize(r.size()); for (int i = 0; auto x : r){ (*this)[i++] += x; } return *this; } fps &operator-= (const fps &r){ if (this->size() < r.size()) this->resize(r.size()); for (int i = 0; auto x : r){ (*this)[i++] -= x; } return *this; } fps &operator*= (const fps &r){ if (this->empty() || r.empty()){ this->clear(); return *this; } (*this) = ntt998244353::multiply(*this, r); return *this; } fps operator* (const mint &r) const { return fps(*this) *= r; } fps operator/ (const mint &r) const { return fps(*this) /= r; } fps operator<< (const int &d) const { return fps(*this) <<= d; } fps operator>> (const int &d) const { return fps(*this) >>= d; } fps operator+ (const fps &r) const { return fps(*this) += r; } fps operator- (const fps &r) const { return fps(*this) -= r; } fps operator* (const fps &r) const { return fps(*this) *= r; } fps operator+ () const { return *this; } fps operator- () const { fps ret(*this); for (auto &x : ret) x = -x; return ret; } mint eval(const mint &x) const { mint res(0), w(1); for (auto a : *this){ res += a * w; w *= x; } return res; } [[nodiscard("Do not change but return changed object.")]] fps pre(std::size_t sz) const { fps ret(this->begin(), this->begin() + std::min(this->size(), sz)); if (ret.size() < sz) ret.resize(sz); return ret; } [[nodiscard("Do not change but return changed object.")]] fps rev() const { fps ret(*this); std::reverse(ret.begin(), ret.end()); return ret; } [[nodiscard("Do not change but return changed object.")]] fps diff() const { if (this->empty()){ return fps(); } fps ret(this->begin() + 1, this->end()); for (int i = 1; auto &x : ret){ x *= i++; } return ret; } [[nodiscard("Do not change but return changed object.")]] fps integral() const { if (this->empty()){ return fps(); } fps ret(1, mint(0)); ret.insert(ret.end(), this->begin(), this->end()); for (int i = 0; auto &x : ret){ x *= bnm.inv(i++); // inv(0) = 0 } return ret; } [[nodiscard("Do not change but return changed object.")]] fps inv(int d = -1) const { const int n = this->size(); if (d == -1) d = n; fps res = {(*this)[0].inv()}; for (int siz = 1; siz < d; siz <<= 1){ fps f(this->begin(),this->begin()+min(n,siz*2)), g(res); f.resize(siz*2), g.resize(siz*2); f.ntt(), g.ntt(); for (int i = 0; i < siz*2; i++) f[i] *= g[i]; f.intt(); f.erase(f.begin(),f.begin()+siz); f.resize(siz*2); f.ntt(); for (int i = 0; i < siz*2; i++) f[i] *= g[i]; f.intt(); mint siz2_inv = mint(siz*2).inv(); siz2_inv *= -siz2_inv; for (int i = 0; i < siz; i++) f[i] *= siz2_inv; res.insert(res.end(),f.begin(),f.begin()+siz); } res.resize(d); return res; } [[nodiscard("Do not change but return changed object.")]] fps log(int d = -1) const { assert(this->empty() == false && (*this)[0].val() == 1u); if (d == -1) d = this->size(); return (this->diff() * this->inv(d)).pre(d - 1).integral(); } [[nodiscard("Do not change but return changed object.")]] fps exp(int d = -1) const { const int n = this->size(); if (d == -1) d = n; assert(n == 0 || (*this)[0].val() == 0u); if (n <= 1){ fps ret(1,1); ret.resize(d); return ret; } // n >= 2 fps f = {mint(1), (*this)[1]}, ret = f; for (int sz = 2; sz < d; sz <<= 1){ f.insert(f.end(), this->begin()+std::min(n,sz), this->begin()+std::min(n,sz*2)); f.resize(sz*2); ret *= f - ret.log(sz*2); ret.resize(sz*2); } ret.resize(d); return ret; } [[nodiscard("Do not change but return changed object.")]] fps pow(long long k, int d = -1) const { const int n = this->size(); if (d == -1) d = n; if (k == 0){ fps ret(d, mint(0)); if (d >= 1) ret[0] = 1; return ret; } // Find left-most nonzero term. for (int i = 0; i < n; i++){ if ((*this)[i].val() != 0u){ mint iv = (*this)[i].inv(); fps ret = ((((*this) * iv) >> i).log(d) * mint(k)).exp(d); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(d); return ret; } if ((i + 1) * k >= d) break; } return fps(d, mint(0)); } void ntt(){ ntt998244353::ntt(*this); } // NOT /= len void intt(){ ntt998244353::intt(*this); } // already /= len void intt_div(){ ntt998244353::intt_div(*this); } // input : ntt( f[0, 2^n) ) // output : ntt( f[0, 2^n) ++ zero_padding[0, 2^n) ) void ntt_doubling(){ ntt998244353::ntt_doubling(*this); } // input : ntt( f[0, 2^n) ) // output : ntt( g[0, 2^{n-1}) ), g[i] = f[i * 2 + odd] void ntt_pick_parity(int odd){ ntt998244353::ntt_pick_parity(*this, odd); } fps quotient(fps r) const { r.shrink(); const int n = this->size(), m = r.size(); if (n < m){ return fps(); } fps quo(*this); const int sz = n - m + 1; std::reverse(quo.begin(), quo.end()); std::reverse(r.begin(), r.end()); quo.resize(sz); quo *= r.inv(sz); quo.resize(sz); std::reverse(quo.begin(), quo.end()); return quo; } fps remainder(fps r) const { r.shrink(); const int n = this->size(), m = r.size(); if (n < m){ return fps(*this); } fps rem(*this); rem -= quotient(r) * r; rem.resize(m-1); rem.shrink(); return rem; } std::pair<fps,fps> remquo(fps r) const { r.shrink(); fps quo = quotient(r); fps rem(*this); rem -= quo * r; rem.shrink(); return {rem, quo}; } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/fps998244353/bostan_mori.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/fps998244353/bostan_mori.hpp" namespace noya2 { modint998244353 bostan_mori(fps998244353 p, fps998244353 q, long long k){ using mint = modint998244353; assert(!q.empty() && q[0] != 0); if (k < 0){ return 0; } int n = std::bit_ceil(std::max(p.size(), q.size())); int h = std::countr_zero((unsigned int)(n)); p.resize(n * 2, 0); q.resize(n * 2, 0); mint ie = mint::raw(internal::INV_FFT_ROOTS[h + 1]); mint i2 = mint::raw((mint::mod() + 1) >> 1); fps998244353 es(n, i2); for (int i = h - 1; i >= 0; i--){ for (int j = 0; j < n; j++){ if (j >> i & 1){ es[j] *= ie; } } ie *= ie; } p.ntt(); q.ntt(); while (k){ for (int i = 0; i < n; i++){ p[i * 2] *= q[i * 2 + 1]; p[i * 2 + 1] *= q[i * 2]; q[i * 2] = q[i * 2 + 1] = q[i * 2] * q[i * 2 + 1]; } p.ntt_pick_parity(k & 1); q.ntt_pick_parity(0); k >>= 1; if (k == 0) break; p.ntt_doubling(); q.ntt_doubling(); } mint sp = 0, sq = 0; for (int i = 0; i < n; i++){ sp += p[i]; sq += q[i]; } return sp / sq; } modint998244353 kth_term_linear(fps998244353 a, fps998244353 c, long long k){ assert(a.size() + 1uz == c.size()); size_t d = a.size(); a *= c; a.resize(d); return bostan_mori(a, c, k); } fps998244353 bostan_mori(fps998244353 f, const fps998244353 &g, long long L, long long R){ assert(0 <= L && L <= R); int n = f.size(), m = g.size() - 1; if (n == 0) return fps998244353(R - L); if (L == R) return fps998244353{}; assert(g[0].val() != 0u); auto g0_inv = g[0].inv(); if (n > R){ n = (int)R; f.resize(n); } if (m == 0){ fps998244353 ans(R - L); for (long long i = 0; i < n - L; i++){ ans[i] = f[i + L] * g0_inv; } return ans; } // bit_ceil(R) = 2^K int K = 64 - std::countl_zero((unsigned long long)(R - 1)); if (K == 0){ // L = 0, R = 1 return fps998244353{f[0] * g0_inv}; } std::vector q(K, fps998244353(m + 1)); for (int i = 0; i <= m; i++){ q[0][i] = g[i] * g0_inv; } std::vector<long long> d_min(K + 1), d_max(K + 1); d_min[0] = std::max(L - n + 1, 0LL); d_max[0] = R - 1; for (int k = 1; k <= K - 1; k++){ auto q_pos(q[k - 1]); for (int i = 1; i <= m; i += 2){ q[k - 1][i] = -q[k - 1][i]; } auto qk_dbl = q_pos * q[k - 1]; for (int i = 0; i <= m; i++){ q[k][i] = qk_dbl[i * 2]; } auto tmp = d_min[k - 1] - 1 - m; d_min[k] = (tmp >= 0LL ? tmp/2 + 1 : 0LL); d_max[k] = d_max[k - 1] / 2; } for (int i = 1; i <= m; i += 2){ q[K - 1][i] = -q[K - 1][i]; } const auto inv2 = binomial<modint998244353>::inv(2); modint998244353 inv2_pow[31]; inv2_pow[0] = modint998244353::raw(1); for (int i = 0; i < 30; i++){ inv2_pow[i + 1] = inv2_pow[i] * inv2; } fps998244353 p{1}; for (int k = K-1; k >= 0; k--){ int B = 64 - std::countl_zero((unsigned long long)(m + std::max(2 * d_max[k + 1] - d_min[k], 0LL))); int W = 1 << B; fps998244353 p_dbl(W); for (int i = 0; i < (int)(p.size()); i++){ p_dbl[i * 2] = p[i]; } q[k].resize(W); p_dbl.ntt(); q[k].ntt(); for (int i = 0; i < W; i++){ p_dbl[i] *= q[k][i]; } p_dbl.intt(); p.resize(d_max[k] - d_min[k] + 1); int i_min = (int)(std::max(-(d_min[k] - 2 * d_min[k + 1]), 0LL)); int i_max = (int)(std::min<long long>(d_max[k] - d_min[k], (p_dbl).size() - 1 - (d_min[k] - 2 * d_min[k + 1]))); for (int i = i_min; i <= i_max; i++){ p[i] = p_dbl[i + d_min[k] - 2 * d_min[k + 1]] * inv2_pow[B]; } } int B = 64 - std::countl_zero((unsigned long long)(n - 1 + d_max[0] - L)); int W = 1 << B; f.resize(W); p.resize(W); f.ntt(); p.ntt(); for (int i = 0; i < W; i++){ f[i] *= p[i]; } f.intt(); g0_inv *= inv2_pow[B]; fps998244353 ans(R - L); for (long long i = 0; i < R - L; i++){ ans[i] = f[i + L - d_min[0]] * g0_inv; } return ans; } } // namespace noya2 #line 37 "c.cpp" using mint = modint998244353; using fps = fps998244353; void solve(){ ll n; in(n); int k; in(k); int mx = k*k*4; vector<mint> fib(mx); fib[0] = fib[1] = 1; repp(i,2,mx){ fib[i] = fib[i-1] + fib[i-2]; } vector<mint> a(mx); rep(i,mx){ a[i] = fib[i].pow(k); } rep(i,mx-1){ a[i+1] += a[i]; } auto c = berlekamp_massey(a); a.resize(c.size()-1); mint ans = kth_term_linear(a,c,n-1); out(ans); } int main(){ int t = 1; //in(t); while (t--) { solve(); } }