結果
問題 | No.2883 K-powered Sum of Fibonacci |
ユーザー | kusaf_ |
提出日時 | 2024-09-11 00:02:04 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 4 ms / 3,000 ms |
コード長 | 14,292 bytes |
コンパイル時間 | 5,116 ms |
コンパイル使用メモリ | 300,156 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-11 00:02:11 |
合計ジャッジ時間 | 6,595 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 3 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 3 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 3 ms
6,944 KB |
testcase_12 | AC | 3 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 3 ms
6,944 KB |
testcase_15 | AC | 3 ms
6,944 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 3 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,944 KB |
testcase_19 | AC | 3 ms
6,940 KB |
testcase_20 | AC | 3 ms
6,940 KB |
testcase_21 | AC | 3 ms
6,944 KB |
testcase_22 | AC | 3 ms
6,944 KB |
testcase_23 | AC | 4 ms
6,940 KB |
testcase_24 | AC | 4 ms
6,940 KB |
testcase_25 | AC | 3 ms
6,940 KB |
testcase_26 | AC | 4 ms
6,944 KB |
testcase_27 | AC | 4 ms
6,944 KB |
testcase_28 | AC | 4 ms
6,944 KB |
testcase_29 | AC | 3 ms
6,944 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,940 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 2 ms
6,944 KB |
testcase_36 | AC | 2 ms
6,944 KB |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | AC | 2 ms
6,940 KB |
testcase_39 | AC | 2 ms
6,944 KB |
testcase_40 | AC | 2 ms
6,940 KB |
testcase_41 | AC | 2 ms
6,940 KB |
testcase_42 | AC | 3 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> #include <atcoder/convolution> using namespace std; using namespace atcoder; using ll = long long; using mint = modint998244353; #define FAST template<ll MOD = 998244353, typename T = mint> struct FPS : vector<T> { using vector<T>::vector; using vector<T>::operator=; FPS pre(int deg) const { FPS r(begin(*this), begin(*this) + min((int)this->size(), deg)); if((int)r.size() < deg) { r.resize(deg); } return r; } FPS rev(int deg = -1) const { FPS r(*this); if(deg != -1) { r.resize(deg, T(0)); } ranges::reverse(r); return r; } void shrink() { while(this->size() && this->back() == T(0)) { this->pop_back(); } } FPS operator+(const FPS &f) const { return FPS(*this) += f; } FPS operator+(const T &x) const { return FPS(*this) += x; } FPS operator-(const FPS &f) const { return FPS(*this) -= f; } FPS operator-(const T &x) const { return FPS(*this) -= x; } FPS operator*(const FPS &f) const { return FPS(*this) *= f; } template<typename I> FPS operator*(const vector<pair<I, T>> &f) const { return FPS(*this) *= f; } template<typename I> FPS operator*(const pair<I, T> &f) const { return FPS(*this) *= f; } FPS operator*(const T &x) const { return FPS(*this) *= x; } FPS operator/(const FPS &f) const { return FPS(*this) /= f; } template<typename I> FPS operator/(vector<pair<I, T>> &f) const { return FPS(*this) /= f; } template<typename I> FPS operator/(const pair<I, T> &f) const { return FPS(*this) /= f; } FPS operator/(const T &x) const { return FPS(*this) /= x; } FPS operator%(const FPS &f) const { return FPS(*this) %= f; } FPS &operator+=(const FPS &f) { if(f.size() > this->size()) { this->resize(f.size()); } for(int i = 0; i < (int)f.size(); i++) { (*this)[i] += f[i]; } return *this; } FPS &operator-=(const FPS &f) { if(f.size() > this->size()) { this->resize(f.size()); } for(int i = 0; i < (int)f.size(); i++) { (*this)[i] -= f[i]; } return *this; } FPS &operator*=(const FPS &f) { #ifdef FAST *this = convolution(*this, f); #else const int n = this->size(), m = f.size(); vector<ll> a(n), b(m); static constexpr ll MOD1 = 754974721, MOD2 = 167772161, MOD3 = 469762049; static constexpr ll M1_M2 = internal::inv_gcd(MOD1, MOD2).second, M12_M3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second, M12 = (MOD1 * MOD2) % MOD; for(int i = 0; i < n; i++) { a[i] = (*this)[i].val(); } for(int i = 0; i < m; i++) { b[i] = f[i].val(); } vector<ll> x = convolution<MOD1>(a, b), y = convolution<MOD2>(a, b), z = convolution<MOD3>(a, b); vector<T> c(n + m - 1); for(int i = 0; i < n + m - 1; i++) { ll v1 = (y[i] - x[i]) * M1_M2 % MOD2; if(v1 < 0) { v1 += MOD2; } ll v2 = (z[i] - (x[i] + MOD1 * v1) % MOD3) * M12_M3 % MOD3; if(v2 < 0) { v2 += MOD3; } c[i] = x[i] + MOD1 * v1 + M12 * v2; } *this = c; #endif return *this; } template<typename I> FPS &operator*=(const vector<pair<I, T>> &f) { const int n = this->size() - 1, m = f.back().first; FPS r(n + m + 1, 0); for(int i = 0; i <= n; i++) { for(auto &[j, c] : f) { r[i + j] += (*this)[i] * c; } } return *this = r; } template<typename I> FPS &operator*=(const pair<I, T> &f) { // *(cx^d + 1) const int n = this->size(); auto [d, c] = f; for(int i = n - d - 1; i >= 0; i--) { (*this)[i + d] += (*this)[i] * c; } return *this; } FPS &operator/=(const FPS &f) { if(this->size() < f.size()) { this->clear(); return *this; } return *this *= f.inv(); } template<typename I> FPS &operator/=(vector<pair<I, T>> &f) { ranges::sort(f, [&](auto x, auto y) { return x.first > y.first; }); const ll n = this->size() - 1, m = f[0].first; FPS r(n - m + 1, 0); for(int i = n - m; i >= 0; i--) { r[i] = (*this)[i + m] / f[0].second; for(auto &[j, c] : f) { (*this)[i + j] -= r[i] * c; } } return *this = r; } template<typename I> FPS &operator/=(const pair<I, T> &f) { // /(cx^d + 1) const int n = this->size(); auto [d, c] = f; for(int i = 0; i < n - d; i++) { (*this)[i + d] -= (*this)[i] * c; } return *this; } FPS &operator%=(const FPS &f) { return *this -= *this / f * f; } pair<FPS, FPS> div_mod(const FPS &f) { FPS g = *this / f; return {g, *this - g * f}; } FPS operator-() { FPS r(this->size()); for(int i = 0; i < (this->size()); i++) { r[i] = -(*this)[i]; } return r; } FPS &operator+=(const T &x) { if(this->empty()) { this->resize(1); } (*this)[0] += x; return *this; } FPS &operator-=(const T &x) { if(this->empty()) { this->resize(1); } (*this)[0] -= x; return *this; } FPS &operator*=(const T &x) { for(int i = 0; i < (int)this->size(); i++) { (*this)[i] *= x; } return *this; } FPS &operator/=(const T &x) { for(int i = 0; i < (int)this->size(); i++) { (*this)[i] /= x; } return *this; } FPS operator>>(ll sz) { if((int)this->size() <= sz) { return {}; } FPS r(*this); r.erase(r.begin(), r.begin() + sz); return r; } FPS operator<<(ll sz) { FPS r(*this); r.insert(r.begin(), sz, T(0)); return r; } FPS dot(const FPS &f) const { FPS r(min(this->size(), f.size())); for(int i = 0; i < r.size(); i++) { r[i] = (*this)[i] * f[i]; } return r; } T operator()(T x) const { T r = 0, w = 1; for(auto &i : (*this)) { r += w * i; w *= x; } return r; } FPS diff() const { const int n = this->size(); FPS r(n); for(int i = 1; i < n; i++) { r[i - 1] = (*this)[i] * T(i); } r[n - 1] = 0; return r; } FPS integral() const { const int n = this->size(); vector<T> inv(n); inv[1] = 1; for(int i = 2; i < n; i++) { inv[i] = -inv[MOD % i] * (MOD / i); } FPS r(n); for(int i = n - 2; i >= 0; i--) { r[i + 1] = (*this)[i] * inv[i + 1]; } r[0] = 0; return r; } FPS inv(ll deg = -1) const { const int n = this->size(); if(deg == -1) { deg = n; } assert(n && (*this)[0] != T(0)); FPS res{(*this)[0].inv()}; #ifdef FAST while((int)res.size() < deg) { int d = res.size(); FPS f(this->begin(), this->begin() + min(n, d * 2)), g(res); f.resize(d * 2); g.resize(d * 2); internal::butterfly(f); internal::butterfly(g); for(int i = 0; i < d * 2; i++) { f[i] *= g[i]; } internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + d); f.resize(d * 2); internal::butterfly(f); for(int i = 0; i < d * 2; i++) { f[i] *= g[i]; } internal::butterfly_inv(f); T iz = T(d * 2).inv(); iz *= -iz; for(int i = 0; i < d; i++) { f[i] *= iz; } res.insert(res.end(), f.begin(), f.begin() + d); } #else for(int i = 1; i < deg; i <<= 1) { res = (res + res - res * res * pre(i << 1)).pre(i << 1); } #endif return res.pre(deg); } FPS log(ll deg = -1) const { assert((*this)[0] == T(1)); if(deg == -1) { deg = this->size(); } return (this->diff() * this->inv(deg)).pre(deg).integral(); } FPS sqrt(ll deg = -1) { const int n = this->size(); if(deg == -1) { deg = n; } if((*this)[0] == T(0)) { for(int i = 1; i < n; i++) { if((*this)[i] != T(0)) { if(i & 1) { return {}; } if(deg - i / 2 <= 0) { break; } auto r = (*this >> i).sqrt(deg - i / 2); if(r.empty()) { return {}; } r = r << (i / 2); if((int)r.size() < deg) { r.resize(deg, T(0)); } return r; } } return FPS(deg, 0); } auto mod_sqrt = [&](const ll &a) -> ll { ll m = MOD - 1, e = 0; if(!a) { return 0; } if(MOD == 2) { return a; } if(T(a).pow(m >> 1) != 1) { return -1; } T b = 1; while(b.pow(m >> 1) == 1) { b++; } while(~m & 1) { m >>= 1; e++; } T x = T(a).pow((m - 1) >> 1), y = T(a) * x * x, z = T(b).pow(m); x *= a; while(y != 1) { ll j = 0; T t = y; while(t != 1) { j++; t *= t; } z = z.pow(1LL << (e - j - 1)); x *= z; z *= z; y *= z; e = j; } return x.val(); }; auto sq = T(mod_sqrt((*this)[0].val())); if(sq * sq != (*this)[0]) { return {}; } FPS r{sq}; T inv2 = T(1) / T(2); for(int i = 1; i < deg; i <<= 1) { r = (r + pre(i << 1) * r.inv(i << 1)) * inv2; } return r.pre(deg); } FPS sqrt(const function<T(T)> &get_sqrt, ll deg = -1) { return sqrt(deg, get_sqrt); } FPS exp(ll deg = -1) const { const int n = this->size(); assert((*this)[0] == T(0)); if(deg == -1) { deg = n; } #ifdef FAST FPS inv; inv.reserve(deg); inv.emplace_back(T(0)); inv.emplace_back(T(1)); auto internal_integral = [&](FPS &f) { const int n = f.size(); while((int)inv.size() <= n) { int i = inv.size(); inv.emplace_back((-inv[MOD % i]) * (MOD / i)); } f.insert(f.begin(), T(0)); for(int i = 1; i <= n; i++) { f[i] *= inv[i]; } }; auto internal_diff = [](FPS &f) { if(f.empty()) { return; } f.erase(f.begin()); T c = 1; for(int i = 0; i < (int)f.size(); i++, c++) { f[i] *= c; } }; FPS b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for(int m = 2; m <= deg; m <<= 1) { auto y = b; y.resize(m * 2); internal::butterfly(y); z1 = z2; FPS z(m); for(int i = 0; i < m; i++) { z[i] = y[i] * z1[i]; } internal::butterfly_inv(z); T si = T(m).inv(); for(int i = 0; i < m; i++) { z[i] *= si; } fill(z.begin(), z.begin() + m / 2, T(0)); internal::butterfly(z); for(int i = 0; i < m; i++) { z[i] *= -z1[i]; } internal::butterfly_inv(z); for(int i = 0; i < m; i++) { z[i] *= si; } c.insert(c.end(), z.begin() + m / 2, z.end()); z2 = c; z2.resize(m * 2); internal::butterfly(z2); FPS x(this->begin(), this->begin() + min((int)this->size(), m)); x.resize(m); internal_diff(x); x.emplace_back(T(0)); internal::butterfly(x); for(int i = 0; i < m; i++) { x[i] *= y[i]; } internal::butterfly_inv(x); for(int i = 0; i < m; i++) { x[i] *= si; } x -= b.diff(); x.resize(m * 2); for(int i = 0; i < m - 1; i++) { x[m + i] = x[i]; x[i] = T(0); } internal::butterfly(x); for(int i = 0; i < m * 2; i++) { x[i] *= z2[i]; } internal::butterfly_inv(x); T si2 = T(m << 1).inv(); for(int i = 0; i < m * 2; i++) { x[i] *= si2; } x.pop_back(); internal_integral(x); for(int i = m; i < min((int)this->size(), m * 2); i++) { x[i] += (*this)[i]; } fill(x.begin(), x.begin() + m, T(0)); internal::butterfly(x); for(int i = 0; i < m * 2; i++) { x[i] *= y[i]; } internal::butterfly_inv(x); for(int i = 0; i < m * 2; i++) { x[i] *= si2; } b.insert(b.end(), x.begin() + m, x.end()); } return b.pre(deg); #else FPS r({T(1)}); for(int i = 1; i < deg; i <<= 1) { r = (r * (pre(i << 1) + T(1) - r.log(i << 1))).pre(i << 1); } return r.pre(deg); #endif } FPS pow(ll k) { const int n = this->size(); assert(k >= 0); if(k == 0) { FPS r(n, T(0)); r[0] = T(1); return r; } for(int i = 0; i < n; i++) { if(i * k > n) { return FPS(n, T(0)); } if((*this)[i] != T(0)) { T rev = (*this)[i].inv(); FPS r = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k)); r = (r << (i * k)).pre(n); if((int)r.size() < n) { r.resize(n, T(0)); } return r; } } return *this; } FPS mod_pow(ll k, FPS f) const { FPS modinv = f.rev().inv(); auto get_div = [&](FPS base) { if(base.size() < f.size()) { base.clear(); return base; } ll n = base.size() - f.size() + 1; return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n); }; FPS x(*this), r{1}; while(k > 0) { if(k & 1) { r *= x; r -= get_div(r) * f; r.shrink(); } x *= x; x -= get_div(x) * f; x.shrink(); k >>= 1; } return r; } }; mint BostanMori(FPS<> p, FPS<> q, ll n) { ll m = max(p.size(), q.size()); p.resize(m); q.resize(m); while(n) { FPS<> r = q; for(ll i = 0; i < ssize(r); i += 2) { r[i] = -r[i]; } FPS<> v = q * r, u = p * r; for(ll i = n % 2; i < ssize(u); i += 2) { p[i / 2] = u[i]; } for(ll i = 0; i < ssize(v); i += 2) { q[i / 2] = v[i]; } n /= 2; } return p[0] / q[0]; } template<typename T, typename U> mint LinearRecurrence(const vector<T> &ini, const vector<U> &rec, ll n) { ll s = ini.size(), k = rec.size(); assert(s >= k); FPS<> p, q(k + 1), a(s); q[0] = 1; for(ll i = 0; i < k; i++) { q[i + 1] = -rec[i]; } for(ll i = 0; i < s; i++) { a[i] = ini[i]; } p = (q * a).pre(k); return BostanMori(p, q, n); } template<typename T> vector<mint> BerlekampMassey(const vector<T> &v) { const int N = v.size(); vector<mint> b, c; b.reserve(N + 1); c.reserve(N + 1); b.push_back(1); c.push_back(1); mint y = 1; for(int ed = 1; ed <= N; ed++) { int l = c.size(), m = b.size(); mint x = 0; for(int i = 0; i < l; i++) { x += c[i] * v[ed - l + i]; } b.emplace_back(0); m++; if(x == 0) { continue; } mint freq = x / y; if(l < m) { auto tmp = c; c.insert(begin(c), m - l, 0); for(int i = 0; i < m; i++) { c[m - i - 1] -= freq * b[m - i - 1]; } b = tmp; y = x; } else { for(int i = 0; i < m; i++) { c[l - i - 1] -= freq * b[m - i - 1]; } } } c.pop_back(); for(auto &i : c) { i = -i; } ranges::reverse(c); return c; } template<typename T> mint BMBM(const vector<T> &v, ll n) { auto bm = BerlekampMassey(v); return LinearRecurrence(v, bm, n); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); ll N, K; cin >> N >> K; vector<mint> f{1, 1}, v{1, 2}; for(ll i = 0; i < 1000; i++) { f.emplace_back(f[i] + f[i + 1]); v.emplace_back(v.back() + f.back().pow(K)); } cout << BMBM(v, --N).val() << "\n"; }