結果
問題 | No.229 線分上を往復する3つの動点の一致 |
ユーザー | ecottea |
提出日時 | 2024-09-11 04:03:47 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 12,722 bytes |
コンパイル時間 | 4,472 ms |
コンパイル使用メモリ | 268,684 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-11 04:04:20 |
合計ジャッジ時間 | 32,703 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 348 ms
6,812 KB |
testcase_01 | AC | 188 ms
6,944 KB |
testcase_02 | AC | 203 ms
6,940 KB |
testcase_03 | AC | 208 ms
6,940 KB |
testcase_04 | AC | 186 ms
6,944 KB |
testcase_05 | AC | 205 ms
6,940 KB |
testcase_06 | AC | 204 ms
6,940 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | AC | 244 ms
6,944 KB |
testcase_11 | WA | - |
testcase_12 | AC | 319 ms
6,940 KB |
testcase_13 | AC | 213 ms
6,940 KB |
testcase_14 | WA | - |
testcase_15 | AC | 288 ms
6,940 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | AC | 354 ms
6,940 KB |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | AC | 259 ms
6,940 KB |
testcase_33 | AC | 381 ms
6,940 KB |
testcase_34 | WA | - |
testcase_35 | AC | 333 ms
6,940 KB |
testcase_36 | AC | 343 ms
6,940 KB |
testcase_37 | AC | 337 ms
6,944 KB |
testcase_38 | WA | - |
testcase_39 | AC | 362 ms
6,940 KB |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | AC | 266 ms
6,944 KB |
testcase_43 | AC | 302 ms
6,940 KB |
testcase_44 | AC | 330 ms
6,940 KB |
testcase_45 | AC | 348 ms
6,940 KB |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = static_modint<(ll)1e9>; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【有理数】 /* * Frac<T>() : O(1) * 0 で初期化する. * * Frac<T>(T num) : O(1) * num で初期化する. * * Frac<T>(T num, T dnm) : O(1) * num / dnm で初期化する(分母は自動的に正にする) * * a == b, a != b, a < b, a > b, a <= b, a >= b : O(1) * 大小比較を行う(分母が共通の場合は積はとらない) * * a + b, a - b, a * b, a / b : O(1) * 加減乗除を行う(和と差については,分母が共通の場合は積はとらない) * 一方が整数でも構わない.複合代入演算子も使用可. * * reduction() : O(log min(num, dnm)) * 自身の約分を行う. * * together(Frac& a, Frac& b) : O(log min(a.dnm, b.dnm)) * a と b を通分する. * * T floor() : O(1) * 自身の floor を返す. * * T ceil() : O(1) * 自身の ceil を返す. */ template <class T = ll> struct Frac { // verify : https://atcoder.jp/contests/abc057/tasks/abc057_d // 分子,分母 T num, dnm; // コンストラクタ Frac() : num(0), dnm(1) {} Frac(T num) : num(num), dnm(1) {} Frac(T num_, T dnm_) : num(num_), dnm(dnm_) { // verify : https://atcoder.jp/contests/abc244/tasks/abc244_h Assert(dnm != 0); if (dnm < 0) { num *= -1; dnm *= -1; } } // 代入 Frac(const Frac& b) = default; Frac& operator=(const Frac& b) = default; // キャスト operator double() const { return (double)num / (double)dnm; } // 比較 bool operator==(const Frac& b) const { // 分母が等しいときはオーバーフロー防止のために掛け算はせず比較する. if (dnm == b.dnm) return num == b.num; return num * b.dnm == b.num * dnm; } bool operator!=(const Frac& b) const { return !(*this == b); } bool operator<(const Frac& b) const { // verify : https://atcoder.jp/contests/abc308/tasks/abc308_c // 分母が等しいときはオーバーフロー防止のために掛け算はせず比較する. if (dnm == b.dnm) return num < b.num; return (num * b.dnm < b.num * dnm); } bool operator>=(const Frac& b) const { return !(*this < b); } bool operator>(const Frac& b) const { return b < *this; } bool operator<=(const Frac& b) const { return !(*this > b); } // 整数との比較 bool operator==(T b) const { return num == b * dnm; } bool operator!=(T b) const { return num != b * dnm; } bool operator<(T b) const { return num < b * dnm; } bool operator>=(T b) const { return num >= b * dnm; } bool operator>(T b) const { return num > b * dnm; } bool operator<=(T b) const { return num <= b * dnm; } friend bool operator==(T a, const Frac& b) { return a * b.dnm == b.num; } friend bool operator!=(T a, const Frac& b) { return a * b.dnm != b.num; } friend bool operator<(T a, const Frac& b) { return a * b.dnm < b.num; } friend bool operator>=(T a, const Frac& b) { return a * b.dnm >= b.num; } friend bool operator>(T a, const Frac& b) { return a * b.dnm > b.num; } friend bool operator<=(T a, const Frac& b) { return a * b.dnm <= b.num; } // 四則演算 Frac& operator+=(const Frac& b) { // verify : https://www.codechef.com/problems/ARCTR // 分母が等しいときはオーバーフロー防止のために掛け算はせず加算する. if (dnm == b.dnm) num += b.num; else { num = num * b.dnm + b.num * dnm; dnm *= b.dnm; } return *this; } Frac& operator-=(const Frac& b) { // verify : https://www.codechef.com/problems/ARCTR // 分母が等しいときはオーバーフロー防止のために掛け算はせず加算する. if (dnm == b.dnm) num -= b.num; else { num = num * b.dnm - b.num * dnm; dnm *= b.dnm; } return *this; } Frac& operator*=(const Frac& b) { num *= b.num; dnm *= b.dnm; return *this; } Frac& operator/=(const Frac& b) { // verify : https://atcoder.jp/contests/abc301/tasks/abc301_g Assert(b.num != 0); num *= b.dnm; dnm *= b.num; if (dnm < 0) { num *= -1; dnm *= -1; } return *this; } Frac operator+(const Frac& b) const { Frac a = *this; return a += b; } Frac operator-(const Frac& b) const { Frac a = *this; return a -= b; } Frac operator*(const Frac& b) const { Frac a = *this; return a *= b; } Frac operator/(const Frac& b) const { Frac a = *this; return a /= b; } Frac operator-() const { return Frac(*this) *= Frac(-1); } // 整数との四則演算 Frac& operator+=(T c) { num += dnm * c; return *this; } Frac& operator-=(T c) { num -= dnm * c; return *this; } Frac& operator*=(T c) { num *= c; return *this; } Frac& operator/=(T c) { Assert(c != T(0)); dnm *= c; if (dnm < 0) { num *= -1; dnm *= -1; } return *this; } Frac operator+(T c) const { Frac a = *this; return a += c; } Frac operator-(T c) const { Frac a = *this; return a -= c; } Frac operator*(T c) const { Frac a = *this; return a *= c; } Frac operator/(T c) const { Frac a = *this; return a /= c; } friend Frac operator+(T c, const Frac& a) { return a + c; } friend Frac operator-(T c, const Frac& a) { return Frac(c) - a; } friend Frac operator*(T c, const Frac& a) { return a * c; } friend Frac operator/(T c, const Frac& a) { return Frac(c) / a; } // 約分を行う. void reduction() { // verify : https://atcoder.jp/contests/abc229/tasks/abc229_h auto g = gcd(num, dnm); num /= g; dnm /= g; } // a と b を通分する. friend void together(Frac& a, Frac& b) { // verify : https://atcoder.jp/contests/abc229/tasks/abc229_h T dnm = lcm(a.dnm, b.dnm); a.num *= dnm / a.dnm; a.dnm = dnm; b.num *= dnm / b.dnm; b.dnm = dnm; } // as を通分する. friend void together(vector<Frac>& as) { T dnm = 1; repe(a, as) dnm = lcm(dnm, a.dnm); repea(a, as) { a.num *= dnm / a.dnm; a.dnm = dnm; } } // 自身の floor を返す. T floor() const { // verify : https://www.codechef.com/problems/LINEFIT?tab=statement if (num >= 0) return num / dnm; else return -((-num + dnm - 1) / dnm); } // 自身の ceil を返す. T ceil() const { // verify : https://www.codechef.com/problems/LINEFIT?tab=statement if (num >= 0) return (num + dnm - 1) / dnm; else return -((-num) / dnm); } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Frac& a) { os << a.num << '/' << a.dnm; return os; } #endif }; int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); vl t(3); cin >> t; Frac<ll> v0 = Frac<ll>(2, t[0]); Frac<ll> v1 = Frac<ll>(2, t[1]); Frac<ll> v2 = Frac<ll>(2, t[2]); Frac<ll> t01 = Frac<ll>(2) / (v0 + v1); Frac<ll> t02 = Frac<ll>(2) / (v0 + v2); Frac<ll> t12 = Frac<ll>(2) / (v1 + v2); t01.reduction(); t02.reduction(); t12.reduction(); dump(t01, t02, t12); vector<Frac<ll>> ts{ t01, t02, t12 }; together(ts); dump(ts); ll num = 1; repe(f, ts) num = lcm(num, f.num); dump(num); Frac<ll> f(num, ts[0].dnm); f.reduction(); Frac<ll> res(f); repi(d, 2, (int)1e6) { dump("-------------- d:", d, "--------------"); auto t = f / Frac<ll>(d); dump(t); auto l0 = t * v0; auto l1 = t * v1; auto l2 = t * v2; l0.reduction(); l1.reduction(); l2.reduction(); dump(l0, l1, l2); l0.num %= l0.dnm * 2; l1.num %= l1.dnm * 2; l2.num %= l2.dnm * 2; if (l0.num > l0.dnm) l0.num = 2 * l0.dnm - l0.num; if (l1.num > l1.dnm) l1.num = 2 * l1.dnm - l1.num; if (l2.num > l2.dnm) l2.num = 2 * l2.dnm - l2.num; dump(l0, l1, l2); if (l0 == l1 && l1 == l2) chmin(res, t); } res.reduction(); cout << res.num << "/" << res.dnm << endl; }