結果

問題 No.2883 K-powered Sum of Fibonacci
ユーザー nononnonon
提出日時 2024-09-13 08:14:18
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 7 ms / 3,000 ms
コード長 5,466 bytes
コンパイル時間 1,601 ms
コンパイル使用メモリ 91,568 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-13 08:14:21
合計ジャッジ時間 3,240 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 3 ms
6,944 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 3 ms
6,940 KB
testcase_08 AC 3 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 6 ms
6,940 KB
testcase_12 AC 3 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 6 ms
6,944 KB
testcase_15 AC 3 ms
6,940 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 3 ms
6,944 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 3 ms
6,940 KB
testcase_20 AC 7 ms
6,944 KB
testcase_21 AC 7 ms
6,940 KB
testcase_22 AC 7 ms
6,944 KB
testcase_23 AC 6 ms
6,940 KB
testcase_24 AC 6 ms
6,944 KB
testcase_25 AC 7 ms
6,940 KB
testcase_26 AC 7 ms
6,944 KB
testcase_27 AC 7 ms
6,944 KB
testcase_28 AC 7 ms
6,944 KB
testcase_29 AC 7 ms
6,940 KB
testcase_30 AC 2 ms
6,944 KB
testcase_31 AC 2 ms
6,940 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 2 ms
6,944 KB
testcase_34 AC 2 ms
6,940 KB
testcase_35 AC 2 ms
6,944 KB
testcase_36 AC 2 ms
6,940 KB
testcase_37 AC 2 ms
6,944 KB
testcase_38 AC 2 ms
6,940 KB
testcase_39 AC 2 ms
6,940 KB
testcase_40 AC 2 ms
6,944 KB
testcase_41 AC 2 ms
6,944 KB
testcase_42 AC 7 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
using namespace std;

template<long long MOD>
struct modint {
    modint() : x(0) {}
    modint(long long v) : x(v % MOD) {
        if (x < 0) x += MOD;
    }
    long long x;
    long long val() const { return x; }
    static constexpr long long mod() noexcept { return MOD; }
    friend modint operator+(modint a, modint b) { return a.x + b.x; }
    friend modint operator-(modint a, modint b) { return a.x - b.x; }
    friend modint operator*(modint a, modint b) { return a.x * b.x; }
    friend modint operator/(modint a, modint b) { return a.x * b.inv(); }
    friend modint operator+=(modint &a, modint b) { return a = a + b; }
    friend modint operator-=(modint &a, modint b) { return a = a - b; }
    friend modint operator*=(modint &a, modint b) { return a = a * b; }
    friend modint operator/=(modint &a, modint b) { return a = a / b; }
    friend bool operator==(modint a, modint b) {return a.x == b.x; }
    friend bool operator!=(modint a, modint b) {return a.x != b.x; }
    modint operator+() const { return *this; }
    modint operator-() const { return modint() - *this; }
    // ここまでがテンプレ
    // これ以降は必要に応じて

    modint pow(long long k) const {
        modint a = x, res = 1;
        while (k > 0) {
            if (k & 1) res *= a;
            a *= a;
            k >>= 1;
        }
        return res;
    }
    modint inv() const {
        long long a = x, b = MOD;
        long long u = 1, v = 0;
        while (b > 0) {
            long long t = a / b;
            a -= t * b;
            swap(a, b);
            u -= t * v;
            swap(u, v);
        }
        return u;
    }

    // ++a とか a-- とかを使うなら書く
    modint& operator++() {
        x++;
        if (x == MOD ) x = 0;
        return *this;
    }
    modint& operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }
    modint operator++(int) {
        modint res = *this;
        ++*this;
        return res;
    }
    modint operator--(int) {
        modint res = *this;
        --*this;
        return res;
    }
};

using mint = modint<998244353>;

#include <vector>

vector<mint> convolution(vector<mint> f, vector<mint> g) {
    int n = f.size(), m = g.size();
    vector<mint> h(n + m - 1);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            h[i + j] += f[i] * g[j];
        }
    }
    return h;
}

vector<mint> div(vector<mint> f, vector<mint> g) {
    if (f.size() < g.size()) return {};
    int n = f.size() - g.size(), m = g.size() - 1;
    vector<mint> h(n + 1);
    for (int i = n; i >= 0; i--) {
        h[i] = f[i + m] / g[m];
        for (int j = m; j >= 0; j--) {
            f[i + j] -= h[i] * g[j];
        }
    }
    return h;
}

vector<mint> Berlekamp_Massey(const vector<mint> &a) {
    int n = a.size();
    vector<mint> b = {1}, c = {1};
    mint y = 1;
    for (int d = 1; d <= n; d++) {
        int k = b.size(), l = c.size();
        mint x = 0;
        for (int i = 0; i < l; i++) {
            x += c[i] * a[d - l + i];
        }
        b.push_back(0);
        k++;
        if (x == 0) continue;
        mint buf = x / y;
        if (l < k) {
            vector<mint> tmp = c;
            c.insert(c.begin(), k - l, 0);
            for (int i = 0; i < k; i++) {
                c[k - i - 1] -= buf * b[k - i -1];
            }
            b = tmp;
            y = x;
        } else {
            for (int i = 0; i < k; i++) {
                c[l - i - 1] -= buf * b[k - i - 1];
            }
        }
    }
    reverse(c.begin(), c.end());
    for (mint &x : c) x = -x;
    return c;
}

mint Bostan_Mori(vector<mint> p, vector<mint> q, long long k) {
    mint res = 0;
    if (p.size() >= q.size()) {
        vector<mint> r = div(p, q);
        auto qr = convolution(q, r);
        for (int i = 0; i < qr.size(); i++) p[i] -= qr[i];
        while (p.size() && p.back() == 0) p.pop_back();
        if (k < r.size()) res += r[k];
    }
    if (p.empty()) return res;
    p.resize( q.size() - 1 );
    auto sub = [&](const vector<mint> &f, bool odd = 0) -> vector<mint> {
        int n = f.size();
        if (!odd) n++;
        vector<mint> g(n / 2);
        for (int i = odd; i < f.size(); i += 2) g[i / 2] = f[i];
        return g;
    };
    while (k) {
        auto q2 = q;
        for (int i = 1; i < q2.size(); i += 2) q2[i] = -q2[i];
        p = sub(convolution(p, q2), k & 1);
        q = sub(convolution(q, q2));
        k /= 2;
    }
    return res + p[0];
}

mint linear_recurrence(vector<mint> a, vector<mint> c, long long k) {
    vector<mint> c2(c.size() + 1);
    for (int i = 0; i < c.size(); i++) c2[i + 1] = -c[i];
    c2[0] = 1;
    auto c3 = convolution(a, c2);
    c3.resize(a.size());
    return Bostan_Mori(c3, c2, k);
}

mint BMBM(const vector<mint> x, long long k) {
    auto tmp = Berlekamp_Massey(x);
    int n = tmp.size() - 1;
    vector<mint> a(n), c(n);
    for (int i = 0; i < n; i++) {
        a[i] = x[i];
        c[i] = tmp[i + 1];
    }
    return linear_recurrence(a, c, k);
}

#include <iostream>

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    long long N;
    int K;
    cin >> N >> K;
    int M = 4 * K;
    vector<mint> F(M), A(M);
    F[0] = F[1] = 1;
    A[0] = 1, A[1] = 2;
    for (int i = 2; i < M; i++) {
        F[i] = F[i - 1] + F[i - 2];
        A[i] = A[i - 1] + F[i].pow(K);
    }
    cout << BMBM(A, N - 1).val() << endl;
}
0