結果
| 問題 | No.2883 K-powered Sum of Fibonacci |
| コンテスト | |
| ユーザー |
nonon
|
| 提出日時 | 2024-09-13 08:14:18 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 8 ms / 3,000 ms |
| コード長 | 5,466 bytes |
| コンパイル時間 | 1,401 ms |
| コンパイル使用メモリ | 90,008 KB |
| 最終ジャッジ日時 | 2025-02-24 06:51:25 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 |
ソースコード
#include <algorithm>
using namespace std;
template<long long MOD>
struct modint {
modint() : x(0) {}
modint(long long v) : x(v % MOD) {
if (x < 0) x += MOD;
}
long long x;
long long val() const { return x; }
static constexpr long long mod() noexcept { return MOD; }
friend modint operator+(modint a, modint b) { return a.x + b.x; }
friend modint operator-(modint a, modint b) { return a.x - b.x; }
friend modint operator*(modint a, modint b) { return a.x * b.x; }
friend modint operator/(modint a, modint b) { return a.x * b.inv(); }
friend modint operator+=(modint &a, modint b) { return a = a + b; }
friend modint operator-=(modint &a, modint b) { return a = a - b; }
friend modint operator*=(modint &a, modint b) { return a = a * b; }
friend modint operator/=(modint &a, modint b) { return a = a / b; }
friend bool operator==(modint a, modint b) {return a.x == b.x; }
friend bool operator!=(modint a, modint b) {return a.x != b.x; }
modint operator+() const { return *this; }
modint operator-() const { return modint() - *this; }
// ここまでがテンプレ
// これ以降は必要に応じて
modint pow(long long k) const {
modint a = x, res = 1;
while (k > 0) {
if (k & 1) res *= a;
a *= a;
k >>= 1;
}
return res;
}
modint inv() const {
long long a = x, b = MOD;
long long u = 1, v = 0;
while (b > 0) {
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return u;
}
// ++a とか a-- とかを使うなら書く
modint& operator++() {
x++;
if (x == MOD ) x = 0;
return *this;
}
modint& operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
modint operator++(int) {
modint res = *this;
++*this;
return res;
}
modint operator--(int) {
modint res = *this;
--*this;
return res;
}
};
using mint = modint<998244353>;
#include <vector>
vector<mint> convolution(vector<mint> f, vector<mint> g) {
int n = f.size(), m = g.size();
vector<mint> h(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
h[i + j] += f[i] * g[j];
}
}
return h;
}
vector<mint> div(vector<mint> f, vector<mint> g) {
if (f.size() < g.size()) return {};
int n = f.size() - g.size(), m = g.size() - 1;
vector<mint> h(n + 1);
for (int i = n; i >= 0; i--) {
h[i] = f[i + m] / g[m];
for (int j = m; j >= 0; j--) {
f[i + j] -= h[i] * g[j];
}
}
return h;
}
vector<mint> Berlekamp_Massey(const vector<mint> &a) {
int n = a.size();
vector<mint> b = {1}, c = {1};
mint y = 1;
for (int d = 1; d <= n; d++) {
int k = b.size(), l = c.size();
mint x = 0;
for (int i = 0; i < l; i++) {
x += c[i] * a[d - l + i];
}
b.push_back(0);
k++;
if (x == 0) continue;
mint buf = x / y;
if (l < k) {
vector<mint> tmp = c;
c.insert(c.begin(), k - l, 0);
for (int i = 0; i < k; i++) {
c[k - i - 1] -= buf * b[k - i -1];
}
b = tmp;
y = x;
} else {
for (int i = 0; i < k; i++) {
c[l - i - 1] -= buf * b[k - i - 1];
}
}
}
reverse(c.begin(), c.end());
for (mint &x : c) x = -x;
return c;
}
mint Bostan_Mori(vector<mint> p, vector<mint> q, long long k) {
mint res = 0;
if (p.size() >= q.size()) {
vector<mint> r = div(p, q);
auto qr = convolution(q, r);
for (int i = 0; i < qr.size(); i++) p[i] -= qr[i];
while (p.size() && p.back() == 0) p.pop_back();
if (k < r.size()) res += r[k];
}
if (p.empty()) return res;
p.resize( q.size() - 1 );
auto sub = [&](const vector<mint> &f, bool odd = 0) -> vector<mint> {
int n = f.size();
if (!odd) n++;
vector<mint> g(n / 2);
for (int i = odd; i < f.size(); i += 2) g[i / 2] = f[i];
return g;
};
while (k) {
auto q2 = q;
for (int i = 1; i < q2.size(); i += 2) q2[i] = -q2[i];
p = sub(convolution(p, q2), k & 1);
q = sub(convolution(q, q2));
k /= 2;
}
return res + p[0];
}
mint linear_recurrence(vector<mint> a, vector<mint> c, long long k) {
vector<mint> c2(c.size() + 1);
for (int i = 0; i < c.size(); i++) c2[i + 1] = -c[i];
c2[0] = 1;
auto c3 = convolution(a, c2);
c3.resize(a.size());
return Bostan_Mori(c3, c2, k);
}
mint BMBM(const vector<mint> x, long long k) {
auto tmp = Berlekamp_Massey(x);
int n = tmp.size() - 1;
vector<mint> a(n), c(n);
for (int i = 0; i < n; i++) {
a[i] = x[i];
c[i] = tmp[i + 1];
}
return linear_recurrence(a, c, k);
}
#include <iostream>
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
long long N;
int K;
cin >> N >> K;
int M = 4 * K;
vector<mint> F(M), A(M);
F[0] = F[1] = 1;
A[0] = 1, A[1] = 2;
for (int i = 2; i < M; i++) {
F[i] = F[i - 1] + F[i - 2];
A[i] = A[i - 1] + F[i].pow(K);
}
cout << BMBM(A, N - 1).val() << endl;
}
nonon