結果

問題 No.2888 Mamehinata
ユーザー 👑 binap
提出日時 2024-09-13 21:34:23
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 4,301 bytes
コンパイル時間 4,727 ms
コンパイル使用メモリ 271,768 KB
最終ジャッジ日時 2025-02-24 07:14:18
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 45 WA * 7
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;
typedef long long ll;
typedef vector<int> vi;
typedef vector<long long> vl;
typedef vector<vector<int>> vvi;
typedef vector<vector<long long>> vvl;
typedef long double ld;
typedef pair<int, int> P;
ostream& operator<<(ostream& os, const modint& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;}
template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;}
template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;}
template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;}
template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return
    os;}
template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : "");
    return os;}
template<typename T> ostream& operator<<(ostream& os, const set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;}
template<typename T> ostream& operator<<(ostream& os, const unordered_set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;}
template<typename S, auto op, auto e> ostream& operator<<(ostream& os, const atcoder::segtree<S, op, e>& seg){int n = seg.max_right(0, [](S){return
    true;}); rep(i, n) os << seg.get(i) << (i == n - 1 ? "\n" : " "); return os;}
template<typename S, auto op, auto e, typename F, auto mapping, auto composition, auto id> ostream& operator<<(ostream& os, const atcoder
    ::lazy_segtree<S, op, e, F, mapping, composition, id>& seg){int n = seg.max_right(0, [](S){return true;}); rep(i, n) os << seg.get(i) << (i == n
    - 1 ? "\n" : " "); return os;}
template<typename T> void chmin(T& a, T b){a = min(a, b);}
template<typename T> void chmax(T& a, T b){a = max(a, b);}
const long long INF = 1001001001001001;
using S = long long;
S _INF(INF);
S _ZERO(0LL);
using F = long long;
S apply(F f, S x){
return f + x;
}
template<typename S, typename F>
struct Dijkstra{
struct Edge{
int from, to;
F cost;
Edge(int from, int to, F cost) : from(from), to(to), cost(cost) {};
};
int n, m;
vector<bool> initialized;
vector<Edge> E;
vector<vector<int>> G;
map<int, vector<S>> dist;
map<int, vector<int>> idx;
Dijkstra(int _n) : n(_n), m(0), initialized(n, false), G(n){}
void add_edge(int from, int to, F cost){
Edge e(from, to, cost);
E.push_back(e);
G[from].emplace_back(m);
m++;
}
void calc(int s){
initialized[s] = true;
dist[s] = vector<S>(n, _INF);
idx[s] = vector<int>(n, -1);
priority_queue<tuple<S, int, int>, vector<tuple<S, int, int>>, greater<tuple<S, int, int>>> pq;
pq.emplace(_ZERO, s, -1);
while(pq.size()){
auto [dist_from, from, index] = pq.top(); pq.pop();
if(dist[s][from] <= dist_from) continue;
dist[s][from] = dist_from;
idx[s][from] = index;
for(int index : G[from]){
int to = E[index].to;
S dist_to = apply(E[index].cost, dist_from);
if(dist[s][to] <= dist_to) continue;
pq.emplace(dist_to, to, index);
}
}
}
int farthest(int s){
if(!initialized[s]) calc(s);
int idx = 0;
rep(i, n) if(dist[s][i] > dist[s][idx]) idx = i;
return idx;
}
S get_dist(int s, int t){
if(!initialized[s]) calc(s);
return dist[s][t];
}
vector<int> restore(int s, int t){
if(!initialized[s]) calc(s);
if(dist[s][t] == _INF) return vector<int>(0);
vector<int> res;
while(idx[s][t] != -1){
auto e = E[idx[s][t]];
res.push_back(idx[s][t]);
t = e.from;
}
reverse(res.begin(), res.end());
return res;
}
};
int main(){
int n, m;
cin >> n >> m;
Dijkstra<long long, long long> graph(n);
rep(i, m){
int u, v;
cin >> u >> v;
u--; v--;
graph.add_edge(u, v, 1);
graph.add_edge(v, u, 1);
}
vector<long long> d(n, INF);
rep(i, n) d[i] = graph.get_dist(0, i);
vector<int> cnt(n + 1);
rep(i, n){
if(d[i] != INF) cnt[d[i]]++;
}
vector<int> p(2);
rep(t, n + 1){
p[t % 2] += cnt[t];
if(t > 0) cout << p[t % 2] << "\n";
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0