結果
問題 | No.2892 Lime and Karin |
ユーザー | noya2 |
提出日時 | 2024-09-13 21:55:27 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 4,289 ms / 8,000 ms |
コード長 | 35,615 bytes |
コンパイル時間 | 4,602 ms |
コンパイル使用メモリ | 280,328 KB |
実行使用メモリ | 27,188 KB |
最終ジャッジ日時 | 2024-09-13 21:56:16 |
合計ジャッジ時間 | 17,360 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 3 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 78 ms
5,376 KB |
testcase_15 | AC | 75 ms
5,376 KB |
testcase_16 | AC | 123 ms
5,376 KB |
testcase_17 | AC | 30 ms
5,376 KB |
testcase_18 | AC | 123 ms
5,376 KB |
testcase_19 | AC | 171 ms
5,888 KB |
testcase_20 | AC | 12 ms
5,376 KB |
testcase_21 | AC | 92 ms
5,376 KB |
testcase_22 | AC | 116 ms
5,376 KB |
testcase_23 | AC | 49 ms
5,376 KB |
testcase_24 | AC | 175 ms
5,888 KB |
testcase_25 | AC | 203 ms
6,016 KB |
testcase_26 | AC | 172 ms
6,016 KB |
testcase_27 | AC | 174 ms
6,016 KB |
testcase_28 | AC | 174 ms
6,144 KB |
testcase_29 | AC | 207 ms
6,016 KB |
testcase_30 | AC | 179 ms
6,016 KB |
testcase_31 | AC | 173 ms
6,016 KB |
testcase_32 | AC | 177 ms
6,016 KB |
testcase_33 | AC | 172 ms
6,016 KB |
testcase_34 | AC | 40 ms
6,016 KB |
testcase_35 | AC | 43 ms
6,016 KB |
testcase_36 | AC | 44 ms
6,016 KB |
testcase_37 | AC | 45 ms
6,144 KB |
testcase_38 | AC | 45 ms
5,888 KB |
testcase_39 | AC | 759 ms
19,076 KB |
testcase_40 | AC | 760 ms
27,188 KB |
testcase_41 | AC | 233 ms
16,376 KB |
testcase_42 | AC | 255 ms
23,796 KB |
testcase_43 | AC | 244 ms
18,676 KB |
testcase_44 | AC | 68 ms
5,376 KB |
testcase_45 | AC | 167 ms
5,504 KB |
testcase_46 | AC | 80 ms
5,376 KB |
testcase_47 | AC | 104 ms
5,376 KB |
testcase_48 | AC | 45 ms
5,376 KB |
testcase_49 | AC | 123 ms
5,376 KB |
testcase_50 | AC | 4,289 ms
6,016 KB |
testcase_51 | AC | 109 ms
5,888 KB |
testcase_52 | AC | 524 ms
6,016 KB |
testcase_53 | AC | 250 ms
6,016 KB |
testcase_54 | AC | 423 ms
6,016 KB |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include<bits/stdc++.h> #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p){ os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p){ is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template<typename T> void out(const vector<vector<T>> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector<int> dx = {0,1,0,-1,1,1,-1,-1}; const vector<int> dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << std::min(n, m); } template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template<typename T> T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0); } template<typename T> T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0); } template<typename T> void uniq(std::vector<T> &v){ std::sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using pil = pair<int,ll>; using pli = pair<ll,int>; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c.cpp" #line 2 "/Users/noya2/Desktop/Noya2_library/tree/simple_tree.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #include<ranges> #line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" namespace noya2::internal { template<class E> struct csr { csr () {} csr (int _n) : n(_n) {} csr (int _n, int m) : n(_n){ start.reserve(m); elist.reserve(m); } // ACL style constructor (do not have to call build) csr (int _n, const std::vector<std::pair<int,E>> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) { for (auto &[i, e] : idx_elem){ start[i + 2]++; } for (int i = 1; i < n; i++){ start[i + 2] += start[i + 1]; } for (auto &[i, e] : idx_elem){ elist[start[i + 1]++] = e; } prepared = true; } int add(int idx, E elem){ int eid = start.size(); start.emplace_back(idx); elist.emplace_back(elem); return eid; } void build(){ if (prepared) return ; int m = start.size(); std::vector<E> nelist(m); std::vector<int> nstart(n + 2, 0); for (int i = 0; i < m; i++){ nstart[start[i] + 2]++; } for (int i = 1; i < n; i++){ nstart[i + 2] += nstart[i + 1]; } for (int i = 0; i < m; i++){ nelist[nstart[start[i] + 1]++] = elist[i]; } swap(elist,nelist); swap(start,nstart); prepared = true; } const auto operator[](int idx) const { return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } auto operator[](int idx){ return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } const auto operator()(int idx, int l, int r) const { return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } auto operator()(int idx, int l, int r){ return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } int n; std::vector<int> start; std::vector<E> elist; bool prepared = false; }; } // namespace noya2::internal #line 5 "/Users/noya2/Desktop/Noya2_library/tree/simple_tree.hpp" namespace noya2 { struct simple_tree { internal::csr<int> g; simple_tree () {} simple_tree (int _n) : g(_n, (_n - 1)*2) { if (_n == 1){ g.build(); } } void add_edge(int u, int v){ g.add(u, v); int id = g.add(v, u); if (id + 1 == (g.n - 1)*2) g.build(); } void input(int indexed = 1){ for (int i = 0; i < g.n - 1; i++){ int u, v; cin >> u >> v; u -= indexed, v -= indexed; add_edge(u, v); } } void input_parents(int indexed = 1){ for (int i = 0; i < g.n - 1; i++){ int v; cin >> v; v -= indexed; add_edge(i + 1, v); } } const auto operator[](int v) const { return g[v]; } auto operator[](int v){ return g[v]; } int size() const { return g.n; } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/tree/centroid_decomposition.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/tree/centroid_decomposition.hpp" namespace noya2 { std::vector<int> centroid_decomposition(const auto &g){ int n = g.size(); if (n == 0){ return {}; } std::vector<int> sub(n), order; order.reserve(n); auto subtree = [&](auto sfs, int v, int f) -> void { sub[v] = 1; for (int u : g[v]){ if (u == f) continue; sfs(sfs, u, v); sub[v] += sub[u]; } }; subtree(subtree,0,-1); auto fixed_root = [&](auto self, int root, int par, int cur_size) -> void { auto dfs = [&](auto sfs, int v, int f, int sz) -> int { int heavy = 0, child = -1; for (int u : g[v]){ if (u == f) continue; if (heavy < sub[u]){ heavy = sub[u]; child = u; } } if (heavy > sz/2){ int ret = sfs(sfs, child, v, sz); sub[v] -= ret; return ret; } else { order.emplace_back(v); for (int u : g[v]){ if (u == f) continue; self(self, u, v, sub[u]); } int ret = sub[v]; sub[v] = 0; return ret; } }; while (cur_size > 0){ cur_size -= dfs(dfs, root, par, cur_size); } }; fixed_root(fixed_root, 0, -1, n); return order; } std::vector<int> centroid_decomposition_tree(const auto &g){ int n = g.size(); if (n == 0){ return {}; } std::vector<int> sub(n), par_tree(n); auto subtree = [&](auto sfs, int v, int f) -> void { sub[v] = 1; for (int u : g[v]){ if (u == f) continue; sfs(sfs, u, v); sub[v] += sub[u]; } }; subtree(subtree,0,-1); auto fixed_root = [&](auto self, int root, int par, int cur_size, int cpre) -> void { auto dfs = [&](auto sfs, int v, int f, int sz) -> int { int heavy = 0, child = -1; for (int u : g[v]){ if (u == f) continue; if (heavy < sub[u]){ heavy = sub[u]; child = u; } } if (heavy > sz/2){ int ret = sfs(sfs, child, v, sz); sub[v] -= ret; return ret; } else { par_tree[v] = cpre; for (int u : g[v]){ if (u == f) continue; self(self, u, v, sub[u], v); } int ret = sub[v]; cpre = v; sub[v] = 0; return ret; } }; while (cur_size > 0){ cur_size -= dfs(dfs, root, par, cur_size); } }; fixed_root(fixed_root, 0, -1, n, -1); return par_tree; } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint4724.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" namespace noya2 { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m); // constexpr long long primitive_root_constexpr(long long m){ // if (m == (1LL << 47) - (1LL << 24) + 1) return 3; // return primitive_root_constexpr(static_cast<int>(m)); // } } // namespace noya2 #line 6 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" namespace noya2{ struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; unsigned long long x = (unsigned long long)((__uint128_t(z) * im) >> 64); unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; template <int m> struct static_modint { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template<std::signed_integral T> constexpr static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> constexpr static_modint(T v){ _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = is_prime_flag<m>; }; template <int id> struct dynamic_modint { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template<std::signed_integral T> dynamic_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> dynamic_modint(T v){ _v = (unsigned int)(v % umod()); } uint val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = noya2::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> noya2::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; template<typename T> concept Modint = requires (T &a){ T::mod(); a.inv(); a.val(); a.pow(declval<int>()); }; } // namespace noya2 #line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint4724.hpp" namespace noya2 { template<> struct static_modint<-4724> { static constexpr unsigned long long mod(){ return m; } static constexpr unsigned long long cal_mod(unsigned long long x){ unsigned long long xu = x >> 47; unsigned long long xd = x & MASK47; unsigned long long res = (xu << 24) + xd - xu; if (res >= m) res -= m; return res; } constexpr static_modint() : _v(0) {} constexpr static_modint(long long x){ if (x < 0){ _v = cal_mod(-x); if (_v != 0){ _v = m - _v; } } else { _v = cal_mod(x); } } constexpr static_modint(unsigned long long x){ _v = cal_mod(x); } template<std::signed_integral T> constexpr static_modint(T x) : static_modint((long long)x) {} template<std::unsigned_integral T> constexpr static_modint(T x) : static_modint((unsigned long long)x) {} using modint4724 = static_modint; constexpr modint4724 &operator+=(const modint4724 &p){ _v += p._v; if (_v >= m) _v -= m; return *this; } constexpr modint4724 &operator-=(const modint4724 &p){ _v += m - p._v; if (_v >= m) _v -= m; return *this; } constexpr modint4724 &operator*=(const modint4724 &p){ unsigned long long a = _v, b = p._v; unsigned long long au = a >> 24, ad = a & MASK24; unsigned long long bu = b >> 24, bd = b & MASK24; unsigned long long X = (au + ad) * (bu + bd); unsigned long long Y = ad * bd; unsigned long long Z = au * bu; unsigned long long A = X - Y + Z, B = Y + m4 - 2*Z; unsigned long long Au = A >> 23, Ad = A & MASK23; _v = cal_mod(((Au + Ad) << 24) + B + m - Au); return *this; } constexpr modint4724 &operator/=(const modint4724 &p){ *this *= p.inv(); return *this; } friend constexpr modint4724 operator+(const modint4724 &lhs, const modint4724 &rhs){ return modint4724(lhs) += rhs; } friend constexpr modint4724 operator-(const modint4724 &lhs, const modint4724 &rhs){ return modint4724(lhs) -= rhs; } friend constexpr modint4724 operator*(const modint4724 &lhs, const modint4724 &rhs){ return modint4724(lhs) *= rhs; } friend constexpr modint4724 operator/(const modint4724 &lhs, const modint4724 &rhs){ return modint4724(lhs) /= rhs; } constexpr modint4724 operator+() const { return *this; } constexpr modint4724 operator-() const { return modint4724() - *this; } constexpr modint4724 inv() const { long long a = _v, b = m, u = 1, v = 0; while (b > 0){ long long t = a / b; std::swap(a -= t * b, b); std::swap(u -= t * v, v); } return modint4724(u); } constexpr modint4724 pow(long long n) const { modint4724 ret(1ULL), mul(_v); while (n != 0){ if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend std::istream &operator>>(std::istream &is, modint4724 &p){ unsigned long long x; is >> x; p = modint4724(x); return is; } friend std::ostream &operator<<(std::ostream &os, const modint4724 &p){ return os << p._v; } constexpr unsigned long long val() const { return _v; } constexpr auto operator<=>(const modint4724 &) const = default; private: unsigned long long _v; static constexpr unsigned long long m = (1ULL << 47) - (1ULL << 24) + 1; static constexpr unsigned long long m4 = m << 2; static constexpr unsigned long long MASK23 = (1ULL << 23) - 1; static constexpr unsigned long long MASK24 = (1ULL << 24) - 1; static constexpr unsigned long long MASK47 = (1ULL << 47) - 1; }; using modint4724 = static_modint<-4724>; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/fps/formal_power_series.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/fps/formal_power_series.hpp" namespace noya2{ template<typename T> concept Field = requires (T a, T b){ a + b; a - b; a / b; a * b; T(0); T(1); }; template<class Info> concept Fps_Info = requires { typename Info::value_type; requires Field<typename Info::value_type>; {Info::multiply(declval<vector<typename Info::value_type>>(),declval<vector<typename Info::value_type>>())} -> convertible_to<vector<typename Info::value_type>>; {Info::inv(declval<vector<typename Info::value_type>>(),declval<int>())} -> convertible_to<vector<typename Info::value_type>>; {Info::integral(declval<vector<typename Info::value_type>>())} -> convertible_to<vector<typename Info::value_type>>; }; template<Fps_Info Info> struct FormalPowerSeries : vector<typename Info::value_type> { using T = typename Info::value_type; using vector<T>::vector; using vector<T>::operator=; using FPS = FormalPowerSeries; FormalPowerSeries (const vector<T> &init_ = {}){ (*this) = init_; } void shrink(){ while (!(*this).empty() && (*this).back() == T(0)) (*this).pop_back(); } FPS &operator+=(const T &r){ if ((*this).empty()) (*this).resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const T &r){ if ((*this).empty()) (*this).resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const T &r){ for (auto &x : *this) x *= r; return *this; } FPS &operator/=(const T &r){ (*this) *= T(1)/r; return *this; } FPS &operator<<=(const int &d){ (*this).insert((*this).begin(),d,T(0)); return *this; } FPS &operator>>=(const int &d){ if ((int)(*this).size() <= d) (*this).clear(); else (*this).erase((*this).begin(),(*this).begin()+d); return *this; } FPS &operator+=(const FPS &r){ if ((*this).size() < r.size()) (*this).resize(r.size()); for (int i = 0; i < (int)(r.size()); i++) (*this)[i] += r[i]; return *this; } FPS &operator-=(const FPS &r){ if ((*this).size() < r.size()) (*this).resize(r.size()); for (int i = 0; i < (int)(r.size()); i++) (*this)[i] -= r[i]; return *this; } FPS &operator*=(const FPS &r){ if ((*this).empty() || r.empty()){ (*this).clear(); return *this; } (*this) = Info::multiply(*this,r); return *this; } FPS operator+(const T &r) const { return FPS(*this) += r; } FPS operator-(const T &r) const { return FPS(*this) -= r; } FPS operator*(const T &r) const { return FPS(*this) *= r; } FPS operator/(const T &r) const { return FPS(*this) /= r; } FPS operator<<(const int &d) const { return FPS(*this) <<= d; } FPS operator>>(const int &d) const { return FPS(*this) >>= d; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator+() const { return *this; } FPS operator-() const { FPS res(*this); for (auto &x : res) x = -x; return res; } T eval(const T &x) const { T res = T(0), w = T(1); for (auto &e : *this) res += e * w, w *= x; return res; } static FPS dot(const FPS &lhs, const FPS &rhs){ FPS res(min(lhs.size(),rhs.size())); for (int i = 0; i < (int)res.size(); i++) res[i] = lhs[i] * rhs[i]; return res; } FPS pre(int siz) const { FPS ret((*this).begin(), (*this).begin() + min((int)this->size(), siz)); if ((int)ret.size() < siz) ret.resize(siz); return ret; } FPS rev() const { FPS ret(*this); reverse(ret.begin(), ret.end()); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); T one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { FPS ret = Info::integral(*this); return ret; } FPS inv(int d = -1) const { FPS ret = Info::inv(*this,d); return ret; } FPS exp(int d = -1) const { const int n = (*this).size(); if (d == -1) d = n; FPS f = {T(1)+(*this)[0],(*this)[1]}, res = {1,(n > 1 ? (*this)[1] : 0)}; for (int sz = 2; sz < d; sz <<= 1){ f.insert(f.end(),(*this).begin()+min(n,sz),(*this).begin()+min(n,sz*2)); if ((int)f.size() < sz*2) f.resize(sz*2); res = res * (f - res.log(2*sz)); res.resize(sz*2); } res.resize(d); return res; } FPS log(int d = -1) const { assert(!(*this).empty() && (*this)[0] == T(1)); if (d == -1) d = (*this).size(); return (this->diff() * this->inv(d)).pre(d - 1).integral(); } }; } // namespace noya2 #line 8 "c.cpp" namespace noya2{ consteval unsigned long long primitive_root_4724(unsigned long long p){ if (p == modint4724::mod()){ return 3; } throw ; } template<Modint mint> struct number_theoretic_transform { static constexpr mint pr = primitive_root_4724(mint::mod()); static constexpr int level = std::countr_zero(mint::mod() - 1); static constexpr std::array<mint,level+1> wgen(mint r){ std::array<mint,level+1> ret; ret[level] = r; for (int i = level-1; i >= 0; i--){ ret[i] = ret[i+1] * ret[i+1]; } return ret; } static constexpr std::array<mint,level+1> wp = wgen(pr.pow((mint::mod()-1) >> level)); static constexpr std::array<mint,level+1> wm = wgen(pr.pow((mint::mod()-1) >> level).inv()); void fft2(std::vector<mint> &a){ if (a.empty()) return ; int n = a.size(); int k = std::countr_zero((unsigned int)(n)); assert(n == (1 << k)); for (int t = 1, v = 1<<(k-1), wi = k; v > 0; t <<= 1, v >>= 1, wi -= 1){ mint ww = 1; int pl = 1<<wi; for (int j = 0; j < v; j++, ww *= wm[wi]){ int j0 = j, j1 = j0+v; for (int i = 0; i < t; i++, j0 += pl, j1 += pl){ mint a1 = a[j1]; a[j1] = (a[j0] - a1) * ww; a[j0] += a1; } } } } void ifft2(std::vector<mint> &a){ if (a.empty()) return ; int n = a.size(); int k = std::countr_zero((unsigned int)(n)); assert(n == (1 << k)); for (int v = 1, t = 1<<(k-1), wi = 1; t > 0; v <<= 1, t >>= 1, wi += 1){ mint ww = 1; int pl = 1<<wi; for (int j = 0; j < v; j++, ww *= wp[wi]){ int j0 = j, j1 = j0+v; for (int i = 0; i < t; i++, j0 += pl, j1 += pl){ mint a1 = a[j1] * ww; a[j1] = a[j0] - a1; a[j0] += a1; } } } } std::vector<mint> multiply(const std::vector<mint> &a, const std::vector<mint> &b) { int l = a.size() + b.size() - 1; if (min<int>(a.size(), b.size()) <= 40){ std::vector<mint> s(l); for (int i = 0; i < (int)a.size(); i++) for (int j = 0; j < (int)b.size(); j++) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; std::vector<mint> s(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; fft2(s); if (a.size() == b.size() && a == b) { for (int i = 0; i < M; ++i) s[i] *= s[i]; } else { std::vector<mint> t(M); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft2(t); for (int i = 0; i < M; ++i) s[i] *= t[i]; } ifft2(s); s.resize(l); mint invm = mint(M).inv(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } }; } // namespace noya2 struct fps4724info { using value_type = modint4724; using mint = modint4724; static std::vector<mint> multiply(const std::vector<mint> &a, const std::vector<mint> &b){ static number_theoretic_transform<mint> ntt; return ntt.multiply(a,b); } static std::vector<mint> inv(const std::vector<mint> &a, int d = -1){ assert(false); } static std::vector<mint> integral(const std::vector<mint> &a){ assert(false); } }; using mint = modint4724; using fps = FormalPowerSeries<fps4724info>; void solve(){ int n; in(n); simple_tree g(n); g.input(); string s; in(s); vector<bool> done(n,false); mint ans = 0; mint i2 = mint(2).inv(); for (int ctr : centroid_decomposition(g)){ fps f; auto depth = [&](auto sfs, int v, int ff) -> int { int ret = (s[v] == '1' ? 1 : -1); int mi = 0; for (int u : g[v]){ if (u == ff) continue; if (done[u]) continue; int dp = sfs(sfs,u,v); chmin(mi,dp); } return mi + ret; }; auto dfs = [&](auto sfs, int v, int ff, int d) -> void { d += (s[v] == '1' ? 1 : -1); for (int u : g[v]){ if (u == ff) continue; if (done[u]) continue; sfs(sfs,u,v,d); } if ((int)f.size() <= d){ f.resize(d+1); } f[d] += 1; }; fps sum, sq; int geta = 0; for (int v : g[ctr]){ if (done[v]) continue; int d = depth(depth,v,ctr); int gg = (d < 0 ? -d : 0); chmax(geta,gg); } for (int v : g[ctr]){ if (done[v]) continue; dfs(dfs,v,ctr,geta); sum += f; sq += f*f; f = {}; } sq = (sum*sum - sq) * i2; for (int i = (s[ctr] == '1' ? 0 : 2); ; i++){ int r = i+geta*2; if (r >= (int)(sq.size())) break; ans += sq[r]; } for (int i = (s[ctr] == '1' ? 0 : 2); ; i++){ int r = i+geta; if (r >= (int)(sum.size())) break; ans += sum[r]; } if (s[ctr] == '1'){ ans += 1; } // out(ctr,ans,geta); done[ctr] = true; } out(ans); } int main(){ int t = 1; //in(t); while (t--) { solve(); } }