結果

問題 No.2888 Mamehinata
ユーザー umimel
提出日時 2024-09-13 22:45:05
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 172 ms / 2,000 ms
コード長 11,639 bytes
コンパイル時間 1,956 ms
コンパイル使用メモリ 182,444 KB
実行使用メモリ 22,884 KB
最終ジャッジ日時 2024-09-13 22:45:22
合計ジャッジ時間 8,370 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 52
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In static member function 'static std::vector<_Tp> shortest_path::dijkstra(graph<T>&, int)':
main.cpp:213:18: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
  213 |             auto [d, v] = que.top();
      |                  ^
main.cpp: In static member function 'static std::vector<std::vector<std::pair<int, T> > > shortest_path::pered(graph<T>&, int)':
main.cpp:284:18: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17' [-Wc++17-extensions]
  284 |             auto [d, v, s] = que.top();
      |                  ^

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second
mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60LL;
const int IINF = (1 << 30) - 2;
template<typename T>
struct edge{
int from;
int to;
T cost;
int id;
edge(){}
edge(int to, T cost=1) : from(-1), to(to), cost(cost){}
edge(int to, T cost, int id) : from(-1), to(to), cost(cost), id(id){}
edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){}
void reverse(){swap(from, to);}
};
template<typename T>
struct edges : std::vector<edge<T>>{
void sort(){
std::sort(
(*this).begin(),
(*this).end(),
[](const edge<T>& a, const edge<T>& b){
return a.cost < b.cost;
}
);
}
};
template<typename T = bool>
struct graph : std::vector<edges<T>>{
private:
int n = 0;
int m = 0;
edges<T> es;
bool dir;
public:
graph(int n, bool dir) : n(n), dir(dir){
(*this).resize(n);
}
void add_edge(int from, int to, T cost=1){
if(dir){
es.push_back(edge<T>(from, to, cost, m));
(*this)[from].push_back(edge<T>(from, to, cost, m++));
}else{
if(from > to) swap(from, to);
es.push_back(edge<T>(from, to, cost, m));
(*this)[from].push_back(edge<T>(from, to, cost, m));
(*this)[to].push_back(edge<T>(to, from, cost, m++));
}
}
int get_vnum(){
return n;
}
int get_enum(){
return m;
}
bool get_dir(){
return dir;
}
edge<T> get_edge(int i){
return es[i];
}
edges<T> get_edge_set(){
return es;
}
};
template<typename T>
struct redge{
int from, to;
T cap, cost;
int rev;
redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){}
redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){}
};
template<typename T> using Edges = vector<edge<T>>;
template<typename T> using weighted_graph = vector<Edges<T>>;
template<typename T> using tree = vector<Edges<T>>;
using unweighted_graph = vector<vector<int>>;
template<typename T> using residual_graph = vector<vector<redge<T>>>;
class shortest_path{
public:
template<typename T>
static vector<T> bfs(graph<T> &G, int s){
int n = G.get_vnum();
vector<T> dist(n, -1);
dist[s] = 0;
queue<int> que;
que.push(s);
while(!que.empty()){
int v = que.front();
que.pop();
for(auto e : G[v]) if(dist[e.to]==-1){
dist[e.to] = dist[v] + 1;
que.push(e.to);
}
}
return dist;
}
template<typename T>
static vector<T> binary_bfs(graph<T> &G, int s){
int n = G.get_vnum();
vector<T> dist(n, -1);
dist[s] = 0;
deque<int> deq;
deq.push_front(s);
while(!deq.empty()){
int v = deq.front();
deq.pop_front();
for(auto e : G[v]) if(dist[e.to]==-1){
dist[e.to] = dist[v] + e.cost;
if(e.cost) deq.push_back(e.to);
else deq.push_front(e.to);
}
}
return dist;
}
template<typename T>
static vector<T> constant_bfs(graph<T> &G, int s, T W){
int n = G.get_vnum();
vector<T> dist(n, -1);
vector<vector<int>> cand(n*W+1);
dist[s] = 0;
cand[0].push_back(s);
for(int d=0; d<=n*W; d++) for(int v : cand[d]){
if(dist[v]!=-1) continue;
for(auto e : G[v]) if(dist[v] + dist[e.to] < dist[e.ot]){
dist[e.to] = dist[v] + e.cost;
cand[dist[e.to]].push_back(e.to);
}
}
return dist;
}
template<typename T>
static vector<T> complement_bfs(graph<T> &G, int s){
int n = G.get_vnum();
map<pair<int, int>, bool> mp;
for(int v=0; v<n; v++) for(auto e : G[v]) mp[{v, e.to}] = true;
vector<T> dist(n, -1);
vector<int> unvisited;
for(int v=0; v<n; v++) if(v != s) unvisited.push_back(v);
queue<int> visited;
visited.push(s);
dist[s] = 0;
while(!visited.empty()){
int v = visited.front();
visited.pop();
vector<int> nxt;
for(int to : unvisited){
if(!mp[{v, to}]){
visited.push(to);
dist[to] = dist[v]+1;
}else{
nxt.pb(to);
}
}
unvisited = nxt;
}
return dist;
}
template<typename T>
static vector<T> dijkstra(graph<T> &G, int s){
int n = G.get_vnum();
const T TINF = numeric_limits<T>::max()/2;
vector<T> dist(n, TINF);
dist[s] = 0;
priority_queue<pair<T, int>, vector<pair<T, int>>, greater<>> que;
que.push({0, s});
while(!que.empty()){
auto [d, v] = que.top();
que.pop();
if(dist[v] < d) continue;
for(auto e : G[v]){
if(dist[v] + e.cost < dist[e.to]){
dist[e.to] = dist[v] + e.cost;
que.push({dist[e.to], e.to});
}
}
}
for(int v=0; v<n; v++) if(dist[v]==TINF) dist[v] = -1;
return dist;
}
template<typename T>
static vector<T> bellmanford(graph<T> &G, int s){
int n = G.get_vnum();
bool dir = G.get_dir();
const T TINF = numeric_limits<T>::max()/2;
edges<T> es = G.get_edge_set();
vector<T> dist(n, TINF);
vector<bool> flag(n, false);
dist[s] = 0;
for(int i=0; i<n; i++) for(auto e : es){
if(dist[e.from]!=TINF && dist[e.from]+e.cost<dist[e.to]) dist[e.to] = dist[e.from] + e.cost;
if(!dir && dist[e.to]!=TINF && dist[e.to]+e.cost<dist[e.from]) dist[e.from] = dist[e.to] + e.cost;
}
for(int i=0; i<n; i++) for(auto e : es){
if(dist[e.from]!=TINF && dist[e.from]+e.cost<dist[e.to]) dist[e.to] = dist[e.from] + e.cost, flag[e.to]=true;
if(!dir && dist[e.to]!=TINF && dist[e.to]+e.cost<dist[e.from]) dist[e.from] = dist[e.to] + e.cost, flag[e.from]=true;
}
for(int i=0; i<n; i++) for(auto e : es){
flag[e.to] = flag[e.to] | flag[e.from];
if(!dir) flag[e.from] = flag[e.from] | flag[e.to];
}
for(int v=0; v<n; v++) if(flag[v]) dist[v] = -TINF;
return dist;
}
template<typename T>
static vector<vector<T>> warshall_floyd(graph<T> &G){
int n = G.get_vnum();
const T TINF = numeric_limits<T>::max()/2;
vector<vector<T>> dist(n, vector<T>(n, TINF));
for(int v=0; v<n; v++) dist[v][v] = 0;
for(int v=0; v<n; v++) for(auto e : G[v]) dist[v][e.to] = min(dist[v][e.to], e.cost);
for(int k=0; k<n; k++) for(int i=0; i<n; i++) for(int j=0; j<n; j++) if(dist[i][k] < TINF && dist[k][j] < TINF) dist[i][j] = min(dist[i][j],
            dist[i][k] + dist[k][j]);
return dist;
}
template<typename T>
static vector<vector<pair<int, T>>> pered(graph<T> &G, int k){
int n = G.get_vnum();
const T TINF = numeric_limits<T>::max()/2;
priority_queue<tuple<T, int, int>, vector<tuple<T, int, int>>, greater<>> que;
vector<vector<pair<int, T>>> neibors(n);
vector<unordered_map<int, T>> mp(n);
for(int v=0; v<n; v++){
que.push({0, v, v});
mp[v][v] = 0;
}
while(!que.empty()){
auto [d, v, s] = que.top();
que.pop();
if((int)neibors[v].size()==k) continue;
if(mp[v].find(s)!=mp[v].end()) if(mp[v][s] < d) continue;
neibors[v].push_back({s, d});
for(auto e : G[v]){
if((int)neibors[e.to].size()==k) continue;
if(mp[e.to].find(s)==mp[e.to].end()) mp[e.to][s] = TINF;
if(d + e.cost < mp[e.to][s]){
mp[e.to][s] = d + e.cost;
que.push({d+e.cost, e.to, s});
}
}
}
return neibors;
}
// template<typename T>
// static T malick_mittal_gupta(graph<T> &G, int s, int t){
// // declear variable
// const T TINF = numeric_limits<T>::max()/2;
// dijkstra<T> dijk_s(G, s), dijk_t(G, t);
// int n = G.get_vnum();
// int m = G.get_enum();
// vector<T> dist_s = dijk_s.get_dist();
// vector<T> dist_t = dijk_t.get_dist();
// vector<int> path = dijk_s.get_vpath(t);
// int p = (int)path.size();
// path.push_back(n); // sentinel
// vector<vector<int>> ch(n);
// for(int v=0; v<n; v++) if(v != s) ch[dijk_s.get_vpar(v)].push_back(v);
// vector<int> label(n, -1);
// function<void(int, int)> labeling = [&](int v, int l){
// label[v] = l;
// for(int to : ch[v]) dfs(to, l);
// };
// for(int i=0; i<p; i++){
// label[path[i]] = i;
// for(int to : ch[path[i]]) if(to != path[i+1]){
// dfs(to, path[i], i);
// }
// }
// vector<vector<int>> sevt(p), eevt(p);
// for(int v=0; v<n; v++) for(auto e : G[v]) if(dijk_s.get_epar(e.to).id != e.id && label[v] < label[e.to]){
// sevt[label[v]].push_back(e.id);
// tevt[label[v]].push_back(e.id);
// }
// T ans = TINF;
// for(int i=1; i<p; i++){
// int u = path[i-1], v = path[i], e_id = dijk_s.get_epar(v);
// // start event with label = i-1
// for(int id : sevt[i-1]){
// auto e = G.get_edge(id);
// int x = e.from, y = e.to;
// if(label[x] > label[y]) swap(x, y);
// eset.insert({dist_s[x]+e.cost+dist_t[y], id});
// }
// // calc ans
// if(!eset.empty()) ans = min(ans, (*eset.begin()).first);
// // end event with label = i
// for(int id : evt[i]){
// auto e = G.get_edge(id);
// int x = e.from, y = e.to;
// if(label[x] > label[y]) swap(x, y);
// eset.erase({dist_s[x]+e.cost+dist_t[y], id});
// }
// }
// return ans;
// }
template<typename T>
static vector<T> yen(graph<T> &G, int s, int t, int k){
}
};
void solve(){
int n, m; cin >> n >> m;
graph<int> G(n, false);
for(int i=0; i<m; i++){
int u, v; cin >> u >> v;
u--; v--;
G.add_edge(u, v);
}
if((int)G[0].size()==0){
for(int i=1; i<=n; i++) cout << 0 << '\n';
return;
}
vector<int> dist = shortest_path::bfs<int>(G, 0);
vector<int> cnt(n+1, 0);
for(int v=0; v<n; v++) if(dist[v]!=-1) cnt[dist[v]]++;
vector<int> sum(2, 0);
sum[0] = cnt[0];
for(int i=1; i<=n; i++){
sum[i%2]+=cnt[i];
cout << sum[i%2] << '\n';
}
}
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
int T=1;
//cin >> T;
while(T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0