結果

問題 No.2890 Chiffon
ユーザー ktr216ktr216
提出日時 2024-09-13 23:19:00
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 53 ms / 2,000 ms
コード長 5,090 bytes
コンパイル時間 1,988 ms
コンパイル使用メモリ 181,416 KB
実行使用メモリ 14,976 KB
最終ジャッジ日時 2024-09-26 14:41:34
合計ジャッジ時間 4,713 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 53
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

#define double long double

using ll = long long;
using ull = unsigned long long;
using VB = vector<bool>;
using VVB = vector<VB>;
using VVVB = vector<VVB>;
using VC = vector<char>;
using VVC = vector<VC>;
using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using VVVVI = vector<VVVI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using VVVL = vector<VVL>;
using VVVVL = vector<VVVL>;
using VVVVVL = vector<VVVVL>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
using VT = vector<string>;
using VVT = vector<VT>;
//using P = pair<int, int>;

#define REP(i, n) for (ll i = 0; i < (ll)(n); i++)
#define FOR(i, a, b) for (ll i = a; i < (ll)(b); i++)
#define ALL(a) (a).begin(),(a).end()

constexpr int INF = 1001001001;
constexpr ll LINF = 1001001001001001001ll;
//constexpr ll LINF = 8e18;
//constexpr int DX[] = {-1, -1, 0, 0, 1, 1};
//constexpr int DY[] = {-1, 0, -1, 1, 0, 1};
constexpr int DX[] = {1, 0, -1, 0, 0, 0};
constexpr int DY[] = {0, 1, 0, -1, 0, 0};
constexpr int DZ[] = {0, 0, 0,  0, 1, -1};

template< typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {return a < b && (a = b, true); }
template< typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {return a > b && (a = b, true); }

const ll MOD = 998244353;
//const ll MOD = 1000000007;

const int MAX_N = 2001 * 2001;
int par[MAX_N];
int rnk[MAX_N];
int siz[MAX_N];

void init(int n) {
    REP(i,n) {
        par[i] = i;
        rnk[i] = 0;
        siz[i] = 1;
    }
}

int find(int x) {
    if (par[x] == x) {
        return x;
    } else {
        return par[x] = find(par[x]);
    }
}

void unite(int x, int y) {
    x = find(x);
    y = find(y);
    if (x == y) return;
    int s = siz[x] + siz[y];
    if (rnk[x] < rnk[y]) {
        par[x] = y;
    } else {
        par[y] = x;
        if (rnk[x] == rnk[y]) rnk[x]++;
    }
    siz[find(x)] = s;
}

bool same(int x, int y) {
    return find(x) == find(y);
}

int size(int x) {
    return siz[find(x)];
}

ll mod_pow(ll x, ll n, ll mod) {
    ll res = 1;
    x %= mod;
    while (n > 0) {
        if (n & 1) res = res * x % mod;
        x = x * x % mod;
        n >>= 1;
    }
    return res;
}

ll gcd(ll x, ll y) {
    if (y == 0) return x;
    return gcd(y, x % y);
}

typedef pair<ll, int> P0;
struct edge { int to; ll cost; };

const int MAX_V = 250050;
//const ll LINF = 1LL<<60;

int V;
vector<edge> G[MAX_V];
ll D[MAX_V];

void dijkstra(ll s) {
    priority_queue<P0, vector<P0>, greater<P0> > que;
    fill(D, D + V, LINF);
    D[s] = 0;
    que.push(P0(0, s));

    while (!que.empty()) {
        P0 p = que.top(); que.pop();
        int v = p.second;
        if (D[v] < p.first) continue;
        for (edge e : G[v]) {
            if (D[e.to] > D[v] + e.cost) {
                D[e.to] = D[v] + e.cost;
                que.push(P0(D[e.to], e.to));
            }
        }
    }
}

/*

double EPS = 1e-10;

double add(double a, double b) {
    if (abs(a + b) < EPS * (abs(a) + abs(b))) return 0;
    return a + b;
}

struct P {
    double x, y;
    P() {}
    P(double x, double y) : x(x), y(y) {
    }
    P operator + (P p) {
        return P(add(x, p.x), add(y, p.y));
    }
    P operator - (P p) {
        return P(add(x, -p.x), add(y, -p.y));
    }
    P operator * (double d) {
        return P(x * d, y * d);
    }
    double dot(P p) {
        return add(x * p.x, y * p.y);
    }
    double det(P p) {
        return add(x * p.y, -y * p.x);
    }
};

bool on_seg(P p1, P p2, P q) {
    return ()
}

P intersection(P p1, P p2, P q1, P q2) {
    return p1 + (p2 - p1) * ((q2 - q1).det(q1 - p1) / (q2 - q1).det(p2 - p1));
}

*/

/*

VL f(400010, 1);

ll C(ll n, ll k) {
    return f[n] * mod_pow(f[k], MOD - 2, MOD) % MOD * mod_pow(f[n - k], MOD - 2, MOD) % MOD;
}

*/

bool fcomp(VL x, VL y) {
    return x[1] * y[0] < x[0] * y[1];
}

// 拡張ユークリッドの互除法の実装例
// ax + by = \pm gcd(a, b) となるx,yを返す
pair<long long, long long> extgcd(long long a, long long b) {
  if (b == 0) return make_pair(1, 0);
  long long x, y;
  tie(y, x) = extgcd(b, a % b);
  y -= a / b * x;
  return make_pair(x, y);
}

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    int n, k;
    cin >> n >> k;
    VI a(k + k + k + 1, INF);
    REP(i, k) {
        cin >> a[i];
        a[k + i] = n + n + a[i];
        a[k + k + i] = n + n + n + n + a[i];
    }
    int ok = 1, ng = n / k + 1;
    while (ok + 1 < ng) {
        int md = (ok + ng) / 2;
        VI b(k + k + 1, 0);
        REP(i, k + k) {
            b[i + 1] = *upper_bound(ALL(a), b[i]);
            if (b[i + 1] == INF) {
                b[0] = INF;
                break;
            }
            if (b[i + 1] - b[i] < md * 2) {
                b[i + 1] = b[i] + md * 2;
            }
        }
        if (b[0] == INF) {
            ng = md;
            continue;
        }
        if (b[k + k] <= b[k] + n + n) ok = md;
        else ng = md;
        //REP(i, k + k + 1) cout << b[i] << " "; cout << endl;
    }
    cout << ok * 2 << endl;
}
0