結果
| 問題 |
No.2892 Lime and Karin
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-09-14 14:20:29 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 252 ms / 8,000 ms |
| コード長 | 20,647 bytes |
| コンパイル時間 | 3,617 ms |
| コンパイル使用メモリ | 272,460 KB |
| 実行使用メモリ | 24,424 KB |
| 最終ジャッジ日時 | 2024-09-14 14:20:48 |
| 合計ジャッジ時間 | 12,702 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 52 |
ソースコード
#line 1 "template/template.hpp"
#include <bits/stdc++.h>
#define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++)
#define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--)
#define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++)
#define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#line 2 "template/debug_template.hpp"
#line 4 "template/debug_template.hpp"
namespace ebi {
#ifdef LOCAL
#define debug(...) \
std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \
debug_out(__VA_ARGS__)
#else
#define debug(...)
#endif
void debug_out() {
std::cerr << std::endl;
}
template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) {
std::cerr << " " << h;
if (sizeof...(t) > 0) std::cerr << " :";
debug_out(t...);
}
} // namespace ebi
#line 2 "template/int_alias.hpp"
#line 4 "template/int_alias.hpp"
namespace ebi {
using ld = long double;
using std::size_t;
using i8 = std::int8_t;
using u8 = std::uint8_t;
using i16 = std::int16_t;
using u16 = std::uint16_t;
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
} // namespace ebi
#line 2 "template/io.hpp"
#line 5 "template/io.hpp"
#include <optional>
#line 7 "template/io.hpp"
namespace ebi {
template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) {
return os << pa.first << " " << pa.second;
}
template <typename T1, typename T2>
std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) {
return os >> pa.first >> pa.second;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) {
for (std::size_t i = 0; i < vec.size(); i++)
os << vec[i] << (i + 1 == vec.size() ? "" : " ");
return os;
}
template <typename T>
std::istream &operator>>(std::istream &os, std::vector<T> &vec) {
for (T &e : vec) std::cin >> e;
return os;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) {
if (opt) {
os << opt.value();
} else {
os << "invalid value";
}
return os;
}
void fast_io() {
std::cout << std::fixed << std::setprecision(15);
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
}
} // namespace ebi
#line 2 "template/utility.hpp"
#line 5 "template/utility.hpp"
#line 2 "graph/base.hpp"
#line 5 "graph/base.hpp"
#include <ranges>
#line 7 "graph/base.hpp"
#line 2 "data_structure/simple_csr.hpp"
#line 6 "data_structure/simple_csr.hpp"
namespace ebi {
template <class E> struct simple_csr {
simple_csr() = default;
simple_csr(int n, const std::vector<std::pair<int, E>>& elements)
: start(n + 1, 0), elist(elements.size()) {
for (auto e : elements) {
start[e.first + 1]++;
}
for (auto i : std::views::iota(0, n)) {
start[i + 1] += start[i];
}
auto counter = start;
for (auto [i, e] : elements) {
elist[counter[i]++] = e;
}
}
simple_csr(const std::vector<std::vector<E>>& es)
: start(es.size() + 1, 0) {
int n = es.size();
for (auto i : std::views::iota(0, n)) {
start[i + 1] = (int)es[i].size() + start[i];
}
elist.resize(start.back());
for (auto i : std::views::iota(0, n)) {
std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]);
}
}
int size() const {
return (int)start.size() - 1;
}
const auto operator[](int i) const {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
auto operator[](int i) {
return std::ranges::subrange(elist.begin() + start[i],
elist.begin() + start[i + 1]);
}
const auto operator()(int i, int l, int r) const {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
auto operator()(int i, int l, int r) {
return std::ranges::subrange(elist.begin() + start[i] + l,
elist.begin() + start[i + 1] + r);
}
private:
std::vector<int> start;
std::vector<E> elist;
};
} // namespace ebi
#line 9 "graph/base.hpp"
namespace ebi {
template <class T> struct Edge {
int from, to;
T cost;
int id;
};
template <class E> struct Graph {
using cost_type = E;
using edge_type = Edge<cost_type>;
Graph(int n_) : n(n_) {}
Graph() = default;
void add_edge(int u, int v, cost_type c) {
buff.emplace_back(u, edge_type{u, v, c, m});
edges.emplace_back(edge_type{u, v, c, m++});
}
void add_undirected_edge(int u, int v, cost_type c) {
buff.emplace_back(u, edge_type{u, v, c, m});
buff.emplace_back(v, edge_type{v, u, c, m});
edges.emplace_back(edge_type{u, v, c, m});
m++;
}
void read_tree(int offset = 1, bool is_weighted = false) {
read_graph(n - 1, offset, false, is_weighted);
}
void read_parents(int offset = 1) {
for (auto i : std::views::iota(1, n)) {
int p;
std::cin >> p;
p -= offset;
add_undirected_edge(p, i, 1);
}
build();
}
void read_graph(int e, int offset = 1, bool is_directed = false,
bool is_weighted = false) {
for (int i = 0; i < e; i++) {
int u, v;
std::cin >> u >> v;
u -= offset;
v -= offset;
if (is_weighted) {
cost_type c;
std::cin >> c;
if (is_directed) {
add_edge(u, v, c);
} else {
add_undirected_edge(u, v, c);
}
} else {
if (is_directed) {
add_edge(u, v, 1);
} else {
add_undirected_edge(u, v, 1);
}
}
}
build();
}
void build() {
assert(!prepared);
csr = simple_csr<edge_type>(n, buff);
buff.clear();
prepared = true;
}
int size() const {
return n;
}
int node_number() const {
return n;
}
int edge_number() const {
return m;
}
edge_type get_edge(int i) const {
return edges[i];
}
std::vector<edge_type> get_edges() const {
return edges;
}
const auto operator[](int i) const {
return csr[i];
}
auto operator[](int i) {
return csr[i];
}
private:
int n, m = 0;
std::vector<std::pair<int,edge_type>> buff;
std::vector<edge_type> edges;
simple_csr<edge_type> csr;
bool prepared = false;
};
} // namespace ebi
#line 8 "template/utility.hpp"
namespace ebi {
template <class T> inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T> inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T> T safe_ceil(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return (a / b) + 1;
else
return -((-a) / b);
}
template <class T> T safe_floor(T a, T b) {
if (a % b == 0)
return a / b;
else if (a >= 0)
return a / b;
else
return -((-a) / b) - 1;
}
constexpr i64 LNF = std::numeric_limits<i64>::max() / 4;
constexpr int INF = std::numeric_limits<int>::max() / 2;
const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1};
const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1};
} // namespace ebi
#line 2 "tree/centroid_decomposition.hpp"
#line 7 "tree/centroid_decomposition.hpp"
namespace ebi {
namespace internal {
template <class F>
void centroid_decomposition_dfs_naive(const std::vector<int> &par,
const std::vector<int> &original_vs,
F f) {
const int n = (int)par.size();
assert(par.size() == original_vs.size());
int center = -1;
std::vector<int> sz(n, 1);
for (const int v : std::views::iota(0, n) | std::views::reverse) {
if (sz[v] >= (n + 1) / 2) {
center = v;
break;
}
sz[par[v]] += sz[v];
}
std::vector<int> color(n, -1);
std::vector<int> vs = {center};
color[center] = 0;
int c = 1;
for (const int v : std::views::iota(1, n)) {
if (par[v] == center) {
vs.emplace_back(v);
color[v] = c++;
}
}
if (center > 0) {
for (int v = par[center]; v != -1; v = par[v]) {
vs.emplace_back(v);
color[v] = c;
}
c++;
}
for (const int v : std::views::iota(0, n)) {
if (color[v] == -1) {
vs.emplace_back(v);
color[v] = color[par[v]];
}
}
std::vector<int> index_ptr(c + 1, 0);
for (const int v : std::views::iota(0, n)) {
index_ptr[color[v] + 1]++;
}
for (const int i : std::views::iota(0, c)) {
index_ptr[i + 1] += index_ptr[i];
}
auto counter = index_ptr;
std::vector<int> ord(n);
for (auto v : vs) {
ord[counter[color[v]]++] = v;
}
std::vector<int> relabel(n);
for (const int v : std::views::iota(0, n)) {
relabel[ord[v]] = v;
}
std::vector<int> original_vs2(n);
for (const int v : std::views::iota(0, n)) {
original_vs2[relabel[v]] = original_vs[v];
}
std::vector<int> relabel_par(n, -1);
for (int v : std::views::iota(1, n)) {
int a = relabel[v];
int b = relabel[par[v]];
if (a > b) std::swap(a, b);
relabel_par[b] = a;
}
f(relabel_par, original_vs2, index_ptr);
for (const int i : std::views::iota(1, c)) {
int l = index_ptr[i], r = index_ptr[i + 1];
std::vector<int> par1(r - l, -1);
std::vector<int> original_vs1(r - l, -1);
for (int v : std::views::iota(l, r)) {
par1[v - l] = (relabel_par[v] == 0 ? -1 : relabel_par[v] - l);
original_vs1[v - l] = original_vs2[v];
}
centroid_decomposition_dfs_naive(par1, original_vs1, f);
}
return;
}
template <class F>
void one_third_centroid_decomposition(const std::vector<int> &par,
const std::vector<int> &original_vs,
F f) {
const int n = (int)par.size();
assert(n > 1);
if (n == 2) return;
int center = -1;
std::vector<int> sz(n, 1);
for (const int v : std::views::iota(0, n) | std::views::reverse) {
if (sz[v] >= (n + 1) / 2) {
center = v;
break;
}
sz[par[v]] += sz[v];
}
std::vector<int> color(n, -1);
std::vector<int> ord(n, -1);
ord[center] = 0;
int t = 1;
int red = n - sz[center];
for (int v = par[center]; v != -1; v = par[v]) {
ord[v] = t++;
color[v] = 0;
}
for (const int v : std::views::iota(1, n)) {
if (par[v] == center && 3 * (red + sz[v]) <= 2 * (n - 1)) {
red += sz[v];
ord[v] = t++;
color[v] = 0;
}
}
for (const int v : std::views::iota(1, n)) {
if (v != center && color[v] == -1 && color[par[v]] == 0) {
ord[v] = t++;
color[v] = 0;
}
}
const int n0 = t - 1;
for (const int v : std::views::iota(1, n)) {
if (v != center && color[v] == -1) {
ord[v] = t++;
color[v] = 1;
}
}
assert(t == n);
const int n1 = n - 1 - n0;
std::vector<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(n, -1);
std::vector<int> original_vs0(n0 + 1), original_vs1(n1 + 1),
original_vs2(n);
for (const int i : std::views::iota(0, n)) {
int v = ord[i];
original_vs2[v] = original_vs[i];
if (color[i] != 1) {
original_vs0[v] = original_vs[i];
}
if (color[i] != 0) {
int idx = std::max(v - n0, 0);
original_vs1[idx] = original_vs[i];
}
}
for (const int v : std::views::iota(1, n)) {
int a = ord[v], b = ord[par[v]];
if (a > b) std::swap(a, b);
par2[b] = a;
if (color[v] != 1 && color[par[v]] != 1) {
par0[b] = a;
}
if (color[v] != 0 && color[par[v]] != 0) {
par1[b - n0] = std::max(a - n0, 0);
}
}
f(par2, original_vs2, n0, n1);
one_third_centroid_decomposition(par0, original_vs0, f);
one_third_centroid_decomposition(par1, original_vs1, f);
return;
}
template <class F>
void one_third_centroid_decomposition_virtual_real(
const std::vector<int> &par, const std::vector<int> &original_vs,
const std::vector<int> &is_real, F f) {
const int n = (int)par.size();
assert(n > 1);
if (n == 2) {
if (is_real[0] && is_real[1]) {
f(par, original_vs, {0, 1});
}
return;
}
int center = -1;
std::vector<int> sz(n, 1);
for (const int v : std::views::iota(0, n) | std::views::reverse) {
if (sz[v] >= (n + 1) / 2) {
center = v;
break;
}
sz[par[v]] += sz[v];
}
std::vector<int> color(n, -1);
std::vector<int> ord(n, -1);
ord[center] = 0;
int t = 1;
int red = n - sz[center];
for (int v = par[center]; v != -1; v = par[v]) {
ord[v] = t++;
color[v] = 0;
}
for (const int v : std::views::iota(1, n)) {
if (par[v] == center && 3 * (red + sz[v]) <= 2 * (n - 1)) {
red += sz[v];
ord[v] = t++;
color[v] = 0;
}
}
for (const int v : std::views::iota(1, n)) {
if (v != center && color[v] == -1 && color[par[v]] == 0) {
ord[v] = t++;
color[v] = 0;
}
}
const int n0 = t - 1;
for (const int v : std::views::iota(1, n)) {
if (v != center && color[v] == -1) {
ord[v] = t++;
color[v] = 1;
}
}
assert(t == n);
const int n1 = n - 1 - n0;
std::vector<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(n, -1);
std::vector<int> original_vs0(n0 + 1), original_vs1(n1 + 1),
original_vs2(n);
std::vector<int> is_real0(n0 + 1), is_real1(n1 + 1), is_real2(n);
for (const int i : std::views::iota(0, n)) {
int v = ord[i];
original_vs2[v] = original_vs[i];
is_real2[v] = is_real[i];
if (color[i] != 1) {
original_vs0[v] = original_vs[i];
is_real0[v] = is_real[i];
}
if (color[i] != 0) {
int idx = std::max(v - n0, 0);
original_vs1[idx] = original_vs[i];
is_real1[idx] = is_real[i];
}
}
for (const int v : std::views::iota(1, n)) {
int a = ord[v], b = ord[par[v]];
if (a > b) std::swap(a, b);
par2[b] = a;
if (color[v] != 1 && color[par[v]] != 1) {
par0[b] = a;
}
if (color[v] != 0 && color[par[v]] != 0) {
par1[b - n0] = std::max(a - n0, 0);
}
}
if (is_real[center]) {
color.assign(n, -1);
color[0] = 0;
for (const int v : std::views::iota(1, n)) {
if (is_real2[v]) color[v] = 1;
}
f(par2, original_vs2, color);
is_real0[0] = is_real1[0] = is_real2[0] = 0;
}
color.assign(n, -1);
for (const int v : std::views::iota(1, n)) {
if (is_real2[v]) {
color[v] = int(v > n0);
}
}
f(par2, original_vs2, color);
one_third_centroid_decomposition_virtual_real(par0, original_vs0, is_real0,
f);
one_third_centroid_decomposition_virtual_real(par1, original_vs1, is_real1,
f);
return;
}
} // namespace internal
template <int MODE, class T, class F>
void centroid_decomposition(const Graph<T> &tree, F f) {
int n = (int)tree.size();
if (n == 1) return;
std::vector<int> bfs_order(n), par(n, -1);
bfs_order[0] = 0;
int l = 0, r = 1;
while (l < r) {
int v = bfs_order[l++];
for (auto e : tree[v]) {
int nv = e.to;
if (nv == par[v]) continue;
bfs_order[r++] = nv;
par[nv] = v;
}
}
assert(l == n && r == n);
{
std::vector<int> relabel(n);
for (int i : std::views::iota(0, n)) {
relabel[bfs_order[i]] = i;
}
std::vector<int> relabel_par(n, -1);
for (int i : std::views::iota(1, n)) {
relabel_par[relabel[i]] = relabel[par[i]];
}
std::swap(par, relabel_par);
}
static_assert(MODE == 0 || MODE == 1 || MODE == 2);
if constexpr (MODE == 0) {
internal::centroid_decomposition_dfs_naive(par, bfs_order, f);
} else if constexpr (MODE == 1) {
internal::one_third_centroid_decomposition(par, bfs_order, f);
} else {
internal::one_third_centroid_decomposition_virtual_real(
par, bfs_order, std::vector<int>(n, 1), f);
}
}
} // namespace ebi
#line 2 "data_structure/fenwick_tree.hpp"
#line 5 "data_structure/fenwick_tree.hpp"
namespace ebi {
template <class T> struct fenwick_tree {
private:
int n;
std::vector<T> data;
public:
fenwick_tree(int _n) : n(_n), data(std::vector<T>(_n + 1, T(0))) {}
void add(int i, T val) {
i++;
for (int x = i; x <= n; x += x & -x) {
data[x] += val;
}
}
T prefix_sum(int i) const {
assert(0 <= i && i <= n);
T ret = 0;
for (int x = i; x > 0; x -= x & -x) {
ret += data[x];
}
return ret;
}
T sum(int l, int r) const {
return prefix_sum(r) - prefix_sum(l);
}
T all_sum() const {
return prefix_sum(n);
}
// prefix_sum(x) >= key となる最小のxを返す関数 O(log N)
int lower_bound(T key) {
if (key <= 0) return 0;
int x = 0;
int max = 1;
while ((max << 1) <= n) max <<= 1;
for (int k = max; k > 0; k >>= 1) {
if (x + k <= n && data[x + k] < key) {
x += k;
key -= data[x];
}
}
return x + 1;
}
};
} // namespace ebi
#line 4 "a.cpp"
namespace ebi {
void main_() {
int n;
std::cin >> n;
Graph<int> g(n);
g.read_tree();
std::string s;
std::cin >> s;
int zero = n + 5;
i64 ans = 0;
fenwick_tree<i64> ftree0(2 * n + 10), ftree1(2 * n + 10);
auto calc = [&](const std::vector<int> &par, const std::vector<int> &vs, int n0, int n1) -> void {
int sz = (int)par.size();
assert(sz - 1 == n0 + n1);
std::vector<int> a(sz, 0);
for(const int v: std::views::iota(1, sz)) {
a[v] = a[par[v]] + (s[vs[v]] == '1' ? 1 : -1);
}
for(const int v: std::views::iota(1, sz)) {
if(v < 1 + n0) {
ftree0.add(zero + a[v], 1);
}
else {
ftree1.add(zero + a[v], 1);
}
}
for(const int v: std::views::iota(1, sz)) {
if(v < 1 + n0) {
int x = zero - (a[v] + (s[vs[0]] == '1' ? 1 : -1));
ans += ftree1.sum(x + 1, 2 * n + 10);
}
else {
int x = zero - (a[v] + (s[vs[0]] == '1' ? 1 : -1));
ans += ftree0.sum(x + 1, 2 * n + 10);
}
}
for(const int v: std::views::iota(1, sz)) {
if(v < 1 + n0) {
ftree0.add(zero + a[v], -1);
}
else {
ftree1.add(zero + a[v], -1);
}
}
};
rep(i,0,n) {
if(s[i] != '1') continue;
for(auto e: g[i]) {
if(s[e.to] == '1') ans++;
}
}
centroid_decomposition<1>(g, calc);
ans /= 2;
rep(i,0,n) if(s[i] == '1') ans++;
std::cout << ans << '\n';
}
} // namespace ebi
int main() {
ebi::fast_io();
int t = 1;
// std::cin >> t;
while (t--) {
ebi::main_();
}
return 0;
}