結果
問題 | No.2883 K-powered Sum of Fibonacci |
ユーザー | Katu2ou |
提出日時 | 2024-09-15 09:58:44 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 5 ms / 3,000 ms |
コード長 | 28,754 bytes |
コンパイル時間 | 8,094 ms |
コンパイル使用メモリ | 335,500 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-15 09:58:54 |
合計ジャッジ時間 | 9,626 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 3 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 3 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 4 ms
5,376 KB |
testcase_12 | AC | 3 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | AC | 4 ms
5,376 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 3 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 4 ms
5,376 KB |
testcase_21 | AC | 5 ms
5,376 KB |
testcase_22 | AC | 5 ms
5,376 KB |
testcase_23 | AC | 4 ms
5,376 KB |
testcase_24 | AC | 4 ms
5,376 KB |
testcase_25 | AC | 4 ms
5,376 KB |
testcase_26 | AC | 4 ms
5,376 KB |
testcase_27 | AC | 4 ms
5,376 KB |
testcase_28 | AC | 4 ms
5,376 KB |
testcase_29 | AC | 4 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
testcase_42 | AC | 5 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> #include <atcoder/all> using namespace std; using namespace atcoder; #define rep2(i, m, n) for (int i = (m); i < (n); ++i) #define rep(i, n) rep2(i, 0, n) #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) #define all(...) std::begin(__VA_ARGS__), std::end(__VA_ARGS__) #define rall(...) std::rbegin(__VA_ARGS__), std::rend(__VA_ARGS__) #define FOR(i, a, b) for (int i = (a), i##_len = (b); i <= i##_len; ++i) #define REV(i, a, b) for (int i = (a); i >= (b); --i) #define CLR(a, b) memset((a), (b), sizeof(a)) #define DUMP(x) cout << #x << " = " << (x) << endl; #define INF 1001001001001001001ll #define inf (int)1001001000 #define MOD 998244353 #define MOD1 1000000007 #define PI 3.14159265358979 #define Dval 1e-12 #define fcout cout << fixed << setprecision(12) #define Mp make_pair #define pb push_back #define fi first #define se second #define SORT(x) sort(x.begin(),x.end()) #define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end()) #define POSL(x,v) (distance(x.begin(),lower_bound(x.begin(),x.end(),v)-x.begin())) #define POSU(x,v) (distance(x.begin(),upper_bound(x.begin(),x.end(),v)-x.begin())) using ll = long long; using ld = long double; using vi = vector<int>; using vl = vector<long long>; using vs = vector<string>; using vd = vector<double>; using vld = vector<long double>; using vc = vector<char>; using vb = vector<bool>; using vpii = vector<pair<int, int>>; using vpil = vector<pair<int, long long>>; using vpll = vector<pair<long long, long long>>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; using vvd = vector<vector<double>>; using vvld = vector<vector<long double>>; using vvc = vector<vector<char>>; using vvb = vector<vector<bool>>; using vvpii = vector<vector<pair<int,int>>>; using vvpll = vector<vector<pair<long long,long long>>>; using vvvi = vector<vector<vector<int>>>; using vvvl = vector<vector<vector<long long>>>; using pii = pair<int, int>; using pll = pair<long long, long long>; using LL = __int128_t; ll gcd(ll x, ll y) { if (x == 0) return y; return gcd(y%x, x);} ll lcm(ll x, ll y) { __int128_t xx,yy; xx=x; yy=y; __int128_t ans=xx * yy / gcd(x, y); ll ans2=ans; return ans; } template<typename T> T POW(T x, ll n){T ret=1; while(n>0){ if(n&1) ret=ret*x; x=x*x; n>>=1; } return ret;} template<typename T> T modpow(T a, ll n, T p) { if(n==0) return (T)1; if (n == 1) return a % p; if (n % 2 == 1) return (a * modpow(a, n - 1, p)) % p; T t = modpow(a, n / 2, p); return (t * t) % p;} template<typename T> T modinv(T a, T m) { if(m==0)return (T)1; T b = m, u = 1, v = 0; while (b) { T t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= m; if (u < 0) u += m; return u;} template<typename T> T REM(T a, T b){ return (a % b + b) % b;} template<typename T> T QUO(T a, T b){ return (a - REM(a, b)) / b;} ll rand_int(ll l, ll r) { //[l, r] //#ifdef LOCAL static mt19937_64 gen; /*#else static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count()); #endif*/ return uniform_int_distribution<ll>(l, r)(gen); } /* const int MAXCOMB=510000; ll MODCOMB = 998244353; ll fac[MAXCOMB], finv[MAXCOMB], inv[MAXCOMB]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAXCOMB; i++) { fac[i] = fac[i - 1] * i % MODCOMB; inv[i] = MODCOMB - inv[MODCOMB%i] * (MODCOMB / i) % MODCOMB; finv[i] = finv[i - 1] * inv[i] % MODCOMB; }} ll COM(ll n, ll k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MODCOMB) % MODCOMB;} ll com(ll n,ll m){ if(n<m || n<=0 ||m<0){ return 0; } if( m==0 || n==m){ return 1; } ll k=1; for(ll i=1;i<=m;i++){ k*=(n-i+1); k%=MODCOMB; k*=modinv(i,MODCOMB); k%=MODCOMB; } return k;} */ /* const int MAXCOMB=510000; std::vector<mint> FAC(MAXCOMB), FINV(MAXCOMB), INV(MAXCOMB); void COMinit() {FAC[0] = FAC[1] = 1;FINV[0] = FINV[1] = 1;INV[1] = 1;for (int i = 2; i < MAXCOMB; i++) {FAC[i] = FAC[i - 1] * i;INV[i] = mint(0) - INV[mint::mod() % i] * (mint::mod() / i);FINV[i] = FINV[i - 1] * INV[i];}} mint COM(int n, int k) {if (n < k) return 0;if (n < 0 || k < 0) return 0;return FAC[n] * FINV[k] * FINV[n - k];}c */ template <typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false));} template <typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false));} template <class T> T BS(vector<T> &vec, T key) { auto itr = lower_bound(vec.begin(), vec.end(), key); return distance(vec.begin(), itr); } template<class T> pair<T,T> RangeBS(vector<T> &vec, T lowv, T highv){auto itr_l = lower_bound(vec.begin(), vec.end(), lowv); auto itr_r = upper_bound(vec.begin(), vec.end(), highv); return make_pair(distance(vec.begin(), itr_l), distance(vec.begin(), itr_r)-1);} void fail() { cout << "-1\n"; exit(0); } void no() { cout << "No\n"; exit(0); } void yes() { cout << "Yes\n"; exit(0); } template<class T> void er(T a) { cout << a << '\n'; exit(0); } int dx[] = { 1,0,-1,0,1,1,-1,-1 }; int dy[] = { 0,1,0,-1,1,-1,1,-1}; bool range_in(int i, int j, int h, int w){ if(i<0 || j<0 || i>=h || j>=w) return false; return true;} int bitcount(int n){n=(n&0x55555555)+(n>>1&0x55555555); n=(n&0x33333333)+(n>>2&0x33333333); n=(n&0x0f0f0f0f)+(n>>4&0x0f0f0f0f); n=(n&0x00ff00ff)+(n>>8&0x00ff00ff); n=(n&0x0000ffff)+(n>>16&0x0000ffff); return n;} template<typename T> struct Edge{ int from, to, index; T cost; Edge() : from(-1), to(-1), index(-1), cost(0) {} Edge(int _to) : from(-1), to(_to), index(-1), cost(0) {} Edge(int _to, T _cost) : from(-1), to(_to), index(-1), cost(_cost) {} Edge(int _from, int _to, int _index) : from(_from), to(_to), index(_index), cost(0) {} Edge(int _from, int _to, int _index, T _cost) : from(_from), to(_to), index(_index), cost(_cost) {} bool operator<(const Edge<T>& other) const { return cost < other.cost; } Edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; using Graph = vector<vector<int>>; template <typename T> using WGraph = vector<vector<Edge<T>>>; template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); static_assert(r * mod == 1, "this code has bugs."); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint operator+() const { return mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, u -= t * v; tmp = x, x = y, y = tmp; tmp = u, u = v, v = tmp; } return mint{u}; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; template <typename mint> struct NTT { static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } NTT() { setwy(level); } void fft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } // jh >= 1 mint ww = one, xx = one * dw[2], wx = one; for (int jh = 4; jh < u;) { ww = xx * xx, wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww, t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector<mint> &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } // jh >= 1 mint ww = one, xx = one * dy[2], yy = one; u <<= 2; for (int jh = 4; jh < u;) { ww = xx * xx, yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if (k & 1) { u = 1 << (k - 1); for (int j = 0; j < u; ++j) { mint ajv = a[j] - a[j + u]; a[j] += a[j + u]; a[j + u] = ajv; } } } void ntt(vector<mint> &a) { if ((int)a.size() <= 1) return; fft4(a, __builtin_ctz(a.size())); } void intt(vector<mint> &a) { if ((int)a.size() <= 1) return; ifft4(a, __builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for (auto &x : a) x *= iv; } vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { int l = a.size() + b.size() - 1; if (min<int>(a.size(), b.size()) <= 40) { vector<mint> s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; setwy(k); vector<mint> s(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; fft4(s, k); if (a.size() == b.size() && a == b) { for (int i = 0; i < M; ++i) s[i] *= s[i]; } else { vector<mint> t(M); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft4(t, k); for (int i = 0; i < M; ++i) s[i] *= t[i]; } ifft4(s, k); s.resize(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } void ntt_doubling(vector<mint> &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) b[i] *= r, r *= zeta; ntt(b); copy(begin(b), end(b), back_inserter(a)); } }; namespace ArbitraryNTT { using i64 = int64_t; using u128 = __uint128_t; constexpr int32_t m0 = 167772161; constexpr int32_t m1 = 469762049; constexpr int32_t m2 = 754974721; using mint0 = LazyMontgomeryModInt<m0>; using mint1 = LazyMontgomeryModInt<m1>; using mint2 = LazyMontgomeryModInt<m2>; constexpr int r01 = mint1(m0).inverse().get(); constexpr int r02 = mint2(m0).inverse().get(); constexpr int r12 = mint2(m1).inverse().get(); constexpr int r02r12 = i64(r02) * r12 % m2; constexpr i64 w1 = m0; constexpr i64 w2 = i64(m0) * m1; template <typename T, typename submint> vector<submint> mul(const vector<T> &a, const vector<T> &b) { static NTT<submint> ntt; vector<submint> s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod()); for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod()); return ntt.multiply(s, t); } template <typename T> vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) { auto d0 = mul<T, mint0>(s, t); auto d1 = mul<T, mint1>(s, t); auto d2 = mul<T, mint2>(s, t); int n = d0.size(); vector<int> ret(n); const int W1 = w1 % mod; const int W2 = w2 % mod; for (int i = 0; i < n; i++) { int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get(); int b = i64(n1 + m1 - a) * r01 % m1; int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2; ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod; } return ret; } template <typename mint> vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) { if (a.size() == 0 && b.size() == 0) return {}; if (min<int>(a.size(), b.size()) < 128) { vector<mint> ret(a.size() + b.size() - 1); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j]; return ret; } vector<int> s(a.size()), t(b.size()); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get(); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get(); vector<int> u = multiply<int>(s, t, mint::get_mod()); vector<mint> ret(u.size()); for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]); return ret; } template <typename T> vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) { if (s.size() == 0 && t.size() == 0) return {}; if (min<int>(s.size(), t.size()) < 128) { vector<u128> ret(s.size() + t.size() - 1); for (int i = 0; i < (int)s.size(); ++i) for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j]; return ret; } auto d0 = mul<T, mint0>(s, t); auto d1 = mul<T, mint1>(s, t); auto d2 = mul<T, mint2>(s, t); int n = d0.size(); vector<u128> ret(n); for (int i = 0; i < n; i++) { i64 n1 = d1[i].get(), n2 = d2[i].get(); i64 a = d0[i].get(); i64 b = (n1 + m1 - a) * r01 % m1; i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2; ret[i] = a + b * w1 + u128(c) * w2; } return ret; } } // namespace ArbitraryNTT template <typename mint> struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする FPS pre(int sz) const { FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz)); if ((int)ret.size() < sz) ret.resize(sz); return ret; } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert(!(*this).empty() && (*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr; template <typename mint> void FormalPowerSeries<mint>::set_fft() { ntt_ptr = nullptr; } template <typename mint> void FormalPowerSeries<mint>::ntt() { exit(1); } template <typename mint> void FormalPowerSeries<mint>::intt() { exit(1); } template <typename mint> void FormalPowerSeries<mint>::ntt_doubling() { exit(1); } template <typename mint> int FormalPowerSeries<mint>::ntt_pr() { exit(1); } template <typename mint> FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=( const FormalPowerSeries<mint>& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } auto ret = ArbitraryNTT::multiply(*this, r); return *this = FormalPowerSeries<mint>(ret.begin(), ret.end()); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (*this).size(); FormalPowerSeries<mint> ret({mint(1) / (*this)[0]}); for (int i = 1; i < deg; i <<= 1) ret = (ret + ret - ret * ret * (*this).pre(i << 1)).pre(i << 1); return ret.pre(deg); } template <typename mint> FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const { assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries<mint> ret({mint(1)}); for (int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + mint(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } using mint = LazyMontgomeryModInt<998244353>; using fps = FormalPowerSeries<mint>; template <typename mint> vector<mint> BerlekampMassey(const vector<mint> &s) { const int N = (int)s.size(); vector<mint> b, c; b.reserve(N + 1); c.reserve(N + 1); b.push_back(mint(1)); c.push_back(mint(1)); mint y = mint(1); for (int ed = 1; ed <= N; ed++) { int l = int(c.size()), m = int(b.size()); mint x = 0; for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i]; b.emplace_back(mint(0)); m++; if (x == mint(0)) continue; mint freq = x / y; if (l < m) { auto tmp = c; c.insert(begin(c), m - l, mint(0)); for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i]; b = tmp; y = x; } else { for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i]; } } reverse(begin(c), end(c)); return c; } template<typename mint> mint LinearRecurrence(long long k, FormalPowerSeries<mint> Q, FormalPowerSeries<mint> P) { Q.shrink(); mint ret = 0; if (P.size() >= Q.size()) { auto R = P / Q; P -= R * Q; P.shrink(); if (k < (int)R.size()) ret += R[k]; } if ((int)P.size() == 0) return ret; FormalPowerSeries<mint>::set_fft(); if (FormalPowerSeries<mint>::ntt_ptr == nullptr) { P.resize((int)Q.size() - 1); while (k) { auto Q2 = Q; for (int i = 1; i < (int)Q2.size(); i += 2) Q2[i] = -Q2[i]; auto S = P * Q2; auto T = Q * Q2; if (k & 1) { for (int i = 1; i < (int)S.size(); i += 2) P[i >> 1] = S[i]; for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i]; } else { for (int i = 0; i < (int)S.size(); i += 2) P[i >> 1] = S[i]; for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i]; } k >>= 1; } return ret + P[0]; } else { int N = 1; while (N < (int)Q.size()) N <<= 1; P.resize(2 * N); Q.resize(2 * N); P.ntt(); Q.ntt(); vector<mint> S(2 * N), T(2 * N); vector<int> btr(N); for (int i = 0, logn = __builtin_ctz(N); i < (1 << logn); i++) { btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (logn - 1)); } mint dw = mint(FormalPowerSeries<mint>::ntt_pr()) .inverse() .pow((mint::get_mod() - 1) / (2 * N)); while (k) { mint inv2 = mint(2).inverse(); // even degree of Q(x)Q(-x) T.resize(N); for (int i = 0; i < N; i++) T[i] = Q[(i << 1) | 0] * Q[(i << 1) | 1]; S.resize(N); if (k & 1) { // odd degree of P(x)Q(-x) for (auto &i : btr) { S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] - P[(i << 1) | 1] * Q[(i << 1) | 0]) * inv2; inv2 *= dw; } } else { // even degree of P(x)Q(-x) for (int i = 0; i < N; i++) { S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] + P[(i << 1) | 1] * Q[(i << 1) | 0]) * inv2; } } swap(P, S); swap(Q, T); k >>= 1; if (k < N) break; P.ntt_doubling(); Q.ntt_doubling(); } P.intt(); Q.intt(); return ret + (P * (Q.inv()))[k]; } } template <typename mint> mint kitamasa(long long N, FormalPowerSeries<mint> Q, FormalPowerSeries<mint> a) { assert(!Q.empty() && Q[0] != 0); if (N < (int)a.size()) return a[N]; assert((int)a.size() >= int(Q.size()) - 1); auto P = a.pre((int)Q.size() - 1) * Q; P.resize(Q.size() - 1); return LinearRecurrence<mint>(N, Q, P); } template <typename mint> mint nth_term(long long n, const vector<mint> &s) { using fps = FormalPowerSeries<mint>; auto bm = BerlekampMassey<mint>(s); return kitamasa(n, fps{begin(bm), end(bm)}, fps{begin(s), end(s)}); } ////////////////////////////////////////////////////////////////////////////////////////// void solve(){ ll n,k; cin>>n>>k; vector<mint> fib(1000); vector<mint> k_fib(1000); fib[0]=1; fib[1]=1; k_fib[0]=1; k_fib[1]=2; for(int i=2;i<1000;i++){ fib[i]=fib[i-1]+fib[i-2]; k_fib[i]+=POW(fib[i],k)+k_fib[i-1]; } mint ans=nth_term(n-1,k_fib); cout<<ans<<endl; } signed main(){ cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(20); int TT; TT = 1; //cin >> TT; while(TT--) solve(); }