結果

問題 No.2883 K-powered Sum of Fibonacci
ユーザー Katu2ouKatu2ou
提出日時 2024-09-15 09:58:44
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 5 ms / 3,000 ms
コード長 28,754 bytes
コンパイル時間 8,094 ms
コンパイル使用メモリ 335,500 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-15 09:58:54
合計ジャッジ時間 9,626 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 3 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 3 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 3 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 4 ms
5,376 KB
testcase_12 AC 3 ms
5,376 KB
testcase_13 AC 3 ms
5,376 KB
testcase_14 AC 4 ms
5,376 KB
testcase_15 AC 3 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 3 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 4 ms
5,376 KB
testcase_21 AC 5 ms
5,376 KB
testcase_22 AC 5 ms
5,376 KB
testcase_23 AC 4 ms
5,376 KB
testcase_24 AC 4 ms
5,376 KB
testcase_25 AC 4 ms
5,376 KB
testcase_26 AC 4 ms
5,376 KB
testcase_27 AC 4 ms
5,376 KB
testcase_28 AC 4 ms
5,376 KB
testcase_29 AC 4 ms
5,376 KB
testcase_30 AC 2 ms
5,376 KB
testcase_31 AC 2 ms
5,376 KB
testcase_32 AC 2 ms
5,376 KB
testcase_33 AC 2 ms
5,376 KB
testcase_34 AC 2 ms
5,376 KB
testcase_35 AC 2 ms
5,376 KB
testcase_36 AC 2 ms
5,376 KB
testcase_37 AC 2 ms
5,376 KB
testcase_38 AC 2 ms
5,376 KB
testcase_39 AC 2 ms
5,376 KB
testcase_40 AC 2 ms
5,376 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 5 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;

#define rep2(i, m, n) for (int i = (m); i < (n); ++i)
#define rep(i, n) rep2(i, 0, n)
#define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i)
#define drep(i, n) drep2(i, n, 0)
#define all(...) std::begin(__VA_ARGS__), std::end(__VA_ARGS__)
#define rall(...) std::rbegin(__VA_ARGS__), std::rend(__VA_ARGS__)
#define FOR(i, a, b) for (int i = (a), i##_len = (b); i <= i##_len; ++i)
#define REV(i, a, b) for (int i = (a); i >= (b); --i)
#define CLR(a, b) memset((a), (b), sizeof(a))
#define DUMP(x) cout << #x << " = " << (x) << endl;
#define INF 1001001001001001001ll
#define inf (int)1001001000
#define MOD 998244353
#define MOD1 1000000007
#define PI 3.14159265358979
#define Dval 1e-12
#define fcout cout << fixed << setprecision(12)
#define Mp make_pair
#define pb push_back
#define fi first
#define se second
#define SORT(x) sort(x.begin(),x.end())
#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())
#define POSL(x,v) (distance(x.begin(),lower_bound(x.begin(),x.end(),v)-x.begin()))
#define POSU(x,v) (distance(x.begin(),upper_bound(x.begin(),x.end(),v)-x.begin()))

using ll = long long;
using ld = long double;
using vi = vector<int>;
using vl = vector<long long>;
using vs = vector<string>;
using vd = vector<double>;
using vld = vector<long double>;
using vc = vector<char>;
using vb = vector<bool>;
using vpii = vector<pair<int, int>>;
using vpil = vector<pair<int, long long>>;
using vpll = vector<pair<long long, long long>>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
using vvd = vector<vector<double>>;
using vvld = vector<vector<long double>>;
using vvc = vector<vector<char>>;
using vvb = vector<vector<bool>>;
using vvpii = vector<vector<pair<int,int>>>;
using vvpll = vector<vector<pair<long long,long long>>>;
using vvvi = vector<vector<vector<int>>>;
using vvvl = vector<vector<vector<long long>>>;
using pii = pair<int, int>;
using pll = pair<long long, long long>;
using LL = __int128_t;

ll gcd(ll x, ll y) {	if (x == 0) return y;	return gcd(y%x, x);} ll lcm(ll x, ll y) { __int128_t xx,yy; xx=x; yy=y; __int128_t ans=xx * yy / gcd(x, y); ll ans2=ans; return ans; }
template<typename T>
T POW(T x, ll n){T ret=1;	while(n>0){		if(n&1) ret=ret*x;		x=x*x;		n>>=1;	}	return ret;}
template<typename T>
T modpow(T a, ll n, T p) {	if(n==0) return (T)1;  if (n == 1) return a % p;  if (n % 2 == 1) return (a * modpow(a, n - 1, p)) % p;  T t = modpow(a, n / 2, p);  return (t * t) % p;}
template<typename T>
T modinv(T a, T m) {	if(m==0)return (T)1;	T b = m, u = 1, v = 0;	while (b) {		T t = a / b;		a -= t * b; swap(a, b);		u -= t * v; swap(u, v);	}	u %= m;	if (u < 0) u += m;	return u;}
template<typename T>
T REM(T a, T b){ return (a % b + b) % b;}
template<typename T>
T QUO(T a, T b){ return (a - REM(a, b)) / b;}
ll rand_int(ll l, ll r) { //[l, r]
	//#ifdef LOCAL
	static mt19937_64 gen;
	/*#else
	static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
	#endif*/
	return uniform_int_distribution<ll>(l, r)(gen);
}
/* 
const int MAXCOMB=510000;
ll MODCOMB = 998244353;
ll fac[MAXCOMB], finv[MAXCOMB], inv[MAXCOMB]; 
void COMinit() {	fac[0] = fac[1] = 1;	finv[0] = finv[1] = 1;	inv[1] = 1;	for (int i = 2; i < MAXCOMB; i++) {		fac[i] = fac[i - 1] * i % MODCOMB;		inv[i] = MODCOMB - inv[MODCOMB%i] * (MODCOMB / i) % MODCOMB;		finv[i] = finv[i - 1] * inv[i] % MODCOMB;	}}
ll COM(ll n, ll k) {	if (n < k) return 0;	if (n < 0 || k < 0) return 0;	return fac[n] * (finv[k] * finv[n - k] % MODCOMB) % MODCOMB;}
ll com(ll n,ll m){   if(n<m || n<=0 ||m<0){		return 0;	}	if( m==0 || n==m){		return 1;	}	ll k=1;	for(ll i=1;i<=m;i++){       k*=(n-i+1); 	   k%=MODCOMB;	   k*=modinv(i,MODCOMB);	   k%=MODCOMB;	}	return k;}
*/

/*
const int MAXCOMB=510000;
std::vector<mint> FAC(MAXCOMB), FINV(MAXCOMB), INV(MAXCOMB);
void COMinit() {FAC[0] = FAC[1] = 1;FINV[0] = FINV[1] = 1;INV[1] = 1;for (int i = 2; i < MAXCOMB; i++) {FAC[i] = FAC[i - 1] * i;INV[i] = mint(0) - INV[mint::mod() % i] * (mint::mod() / i);FINV[i] = FINV[i - 1] * INV[i];}}
mint COM(int n, int k) {if (n < k) return 0;if (n < 0 || k < 0) return 0;return FAC[n] * FINV[k] * FINV[n - k];}c
*/

template <typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false));}
template <typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false));}
template <class T> T BS(vector<T> &vec, T key) { auto itr = lower_bound(vec.begin(), vec.end(), key); return distance(vec.begin(), itr); }
template<class T> pair<T,T> RangeBS(vector<T> &vec, T lowv, T highv){auto itr_l = lower_bound(vec.begin(), vec.end(), lowv); auto itr_r = upper_bound(vec.begin(), vec.end(), highv); return make_pair(distance(vec.begin(), itr_l), distance(vec.begin(), itr_r)-1);}
void fail() { cout << "-1\n"; exit(0); } void no() { cout << "No\n"; exit(0); } void yes() { cout << "Yes\n"; exit(0); }
template<class T> void er(T a) { cout << a << '\n'; exit(0); }
int dx[] = { 1,0,-1,0,1,1,-1,-1 }; int dy[] = { 0,1,0,-1,1,-1,1,-1};
bool range_in(int i, int j, int h, int w){ if(i<0 || j<0 || i>=h || j>=w) return false; return true;} 
int bitcount(int n){n=(n&0x55555555)+(n>>1&0x55555555); n=(n&0x33333333)+(n>>2&0x33333333); n=(n&0x0f0f0f0f)+(n>>4&0x0f0f0f0f); n=(n&0x00ff00ff)+(n>>8&0x00ff00ff); n=(n&0x0000ffff)+(n>>16&0x0000ffff); return n;}


template<typename T>
struct Edge{
    int from, to, index;
    T cost;
    Edge() : from(-1), to(-1), index(-1), cost(0) {}
    Edge(int _to) : from(-1), to(_to), index(-1), cost(0) {}
    Edge(int _to, T _cost) : from(-1), to(_to), index(-1), cost(_cost) {}
    Edge(int _from, int _to, int _index) : from(_from), to(_to), index(_index), cost(0) {}
    Edge(int _from, int _to, int _index, T _cost) 
        : from(_from), to(_to), index(_index), cost(_cost) {}
    bool operator<(const Edge<T>& other) const {
        return cost < other.cost; 
    }
    Edge &operator=(const int &x) {
        to = x;
        return *this;
    }
    operator int() const { return to; }
};
using Graph = vector<vector<int>>; 
template <typename T>
using WGraph = vector<vector<Edge<T>>>; 


template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};

template <typename mint>
struct NTT {
  static constexpr uint32_t get_pr() {
    uint32_t _mod = mint::get_mod();
    using u64 = uint64_t;
    u64 ds[32] = {};
    int idx = 0;
    u64 m = _mod - 1;
    for (u64 i = 2; i * i <= m; ++i) {
      if (m % i == 0) {
        ds[idx++] = i;
        while (m % i == 0) m /= i;
      }
    }
    if (m != 1) ds[idx++] = m;

    uint32_t _pr = 2;
    while (1) {
      int flg = 1;
      for (int i = 0; i < idx; ++i) {
        u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
        while (b) {
          if (b & 1) r = r * a % _mod;
          a = a * a % _mod;
          b >>= 1;
        }
        if (r == 1) {
          flg = 0;
          break;
        }
      }
      if (flg == 1) break;
      ++_pr;
    }
    return _pr;
  };

  static constexpr uint32_t mod = mint::get_mod();
  static constexpr uint32_t pr = get_pr();
  static constexpr int level = __builtin_ctzll(mod - 1);
  mint dw[level], dy[level];

  void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }

  NTT() { setwy(level); }

  void fft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      for (int j = 0; j < v; ++j) {
        mint ajv = a[j + v];
        a[j + v] = a[j] - ajv;
        a[j] += ajv;
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = j1 + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dw[2], wx = one;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, wx = ww * xx;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
               t3 = a[j2 + v] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
        }
        xx *= dw[__builtin_ctzll((jh += 4))];
      }
      u <<= 2;
      v >>= 2;
    }
  }

  void ifft4(vector<mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = v + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
          a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
          a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
        }
      }
      // jh >= 1
      mint ww = one, xx = one * dy[2], yy = one;
      u <<= 2;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, yy = xx * imag;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
          a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
        }
        xx *= dy[__builtin_ctzll(jh += 4)];
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      u = 1 << (k - 1);
      for (int j = 0; j < u; ++j) {
        mint ajv = a[j] - a[j + u];
        a[j] += a[j + u];
        a[j + u] = ajv;
      }
    }
  }

  void ntt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    fft4(a, __builtin_ctz(a.size()));
  }

  void intt(vector<mint> &a) {
    if ((int)a.size() <= 1) return;
    ifft4(a, __builtin_ctz(a.size()));
    mint iv = mint(a.size()).inverse();
    for (auto &x : a) x *= iv;
  }

  vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    int k = 2, M = 4;
    while (M < l) M <<= 1, ++k;
    setwy(k);
    vector<mint> s(M);
    for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
    fft4(s, k);
    if (a.size() == b.size() && a == b) {
      for (int i = 0; i < M; ++i) s[i] *= s[i];
    } else {
      vector<mint> t(M);
      for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
      fft4(t, k);
      for (int i = 0; i < M; ++i) s[i] *= t[i];
    }
    ifft4(s, k);
    s.resize(l);
    mint invm = mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] *= invm;
    return s;
  }

  void ntt_doubling(vector<mint> &a) {
    int M = (int)a.size();
    auto b = a;
    intt(b);
    mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
    ntt(b);
    copy(begin(b), end(b), back_inserter(a));
  }
};


namespace ArbitraryNTT {
using i64 = int64_t;
using u128 = __uint128_t;
constexpr int32_t m0 = 167772161;
constexpr int32_t m1 = 469762049;
constexpr int32_t m2 = 754974721;
using mint0 = LazyMontgomeryModInt<m0>;
using mint1 = LazyMontgomeryModInt<m1>;
using mint2 = LazyMontgomeryModInt<m2>;
constexpr int r01 = mint1(m0).inverse().get();
constexpr int r02 = mint2(m0).inverse().get();
constexpr int r12 = mint2(m1).inverse().get();
constexpr int r02r12 = i64(r02) * r12 % m2;
constexpr i64 w1 = m0;
constexpr i64 w2 = i64(m0) * m1;

template <typename T, typename submint>
vector<submint> mul(const vector<T> &a, const vector<T> &b) {
  static NTT<submint> ntt;
  vector<submint> s(a.size()), t(b.size());
  for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod());
  for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod());
  return ntt.multiply(s, t);
}

template <typename T>
vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) {
  auto d0 = mul<T, mint0>(s, t);
  auto d1 = mul<T, mint1>(s, t);
  auto d2 = mul<T, mint2>(s, t);
  int n = d0.size();
  vector<int> ret(n);
  const int W1 = w1 % mod;
  const int W2 = w2 % mod;
  for (int i = 0; i < n; i++) {
    int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get();
    int b = i64(n1 + m1 - a) * r01 % m1;
    int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2;
    ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod;
  }
  return ret;
}

template <typename mint>
vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
  if (a.size() == 0 && b.size() == 0) return {};
  if (min<int>(a.size(), b.size()) < 128) {
    vector<mint> ret(a.size() + b.size() - 1);
    for (int i = 0; i < (int)a.size(); ++i)
      for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j];
    return ret;
  }
  vector<int> s(a.size()), t(b.size());
  for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get();
  for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get();
  vector<int> u = multiply<int>(s, t, mint::get_mod());
  vector<mint> ret(u.size());
  for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]);
  return ret;
}

template <typename T>
vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) {
  if (s.size() == 0 && t.size() == 0) return {};
  if (min<int>(s.size(), t.size()) < 128) {
    vector<u128> ret(s.size() + t.size() - 1);
    for (int i = 0; i < (int)s.size(); ++i)
      for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j];
    return ret;
  }
  auto d0 = mul<T, mint0>(s, t);
  auto d1 = mul<T, mint1>(s, t);
  auto d2 = mul<T, mint2>(s, t);
  int n = d0.size();
  vector<u128> ret(n);
  for (int i = 0; i < n; i++) {
    i64 n1 = d1[i].get(), n2 = d2[i].get();
    i64 a = d0[i].get();
    i64 b = (n1 + m1 - a) * r01 % m1;
    i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2;
    ret[i] = a + b * w1 + u128(c) * w2;
  }
  return ret;
}
}  // namespace ArbitraryNTT


template <typename mint>
struct FormalPowerSeries : vector<mint> {
  using vector<mint>::vector;
  using FPS = FormalPowerSeries;

  FPS &operator+=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  FPS &operator+=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  FPS &operator-=(const FPS &r) {
    if (r.size() > this->size()) this->resize(r.size());
    for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  FPS &operator-=(const mint &r) {
    if (this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  FPS &operator*=(const mint &v) {
    for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
    return *this;
  }

  FPS &operator/=(const FPS &r) {
    if (this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    if ((int)r.size() <= 64) {
      FPS f(*this), g(r);
      g.shrink();
      mint coeff = g.back().inverse();
      for (auto &x : g) x *= coeff;
      int deg = (int)f.size() - (int)g.size() + 1;
      int gs = g.size();
      FPS quo(deg);
      for (int i = deg - 1; i >= 0; i--) {
        quo[i] = f[i + gs - 1];
        for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
      }
      *this = quo * coeff;
      this->resize(n, mint(0));
      return *this;
    }
    return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
  }

  FPS &operator%=(const FPS &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  FPS operator+(const FPS &r) const { return FPS(*this) += r; }
  FPS operator+(const mint &v) const { return FPS(*this) += v; }
  FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
  FPS operator-(const mint &v) const { return FPS(*this) -= v; }
  FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
  FPS operator*(const mint &v) const { return FPS(*this) *= v; }
  FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
  FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
  FPS operator-() const {
    FPS ret(this->size());
    for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  void shrink() {
    while (this->size() && this->back() == mint(0)) this->pop_back();
  }

  FPS rev() const {
    FPS ret(*this);
    reverse(begin(ret), end(ret));
    return ret;
  }

  FPS dot(FPS r) const {
    FPS ret(min(this->size(), r.size()));
    for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする
  FPS pre(int sz) const {
    FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
    if ((int)ret.size() < sz) ret.resize(sz);
    return ret;
  }

  FPS operator>>(int sz) const {
    if ((int)this->size() <= sz) return {};
    FPS ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  FPS operator<<(int sz) const {
    FPS ret(*this);
    ret.insert(ret.begin(), sz, mint(0));
    return ret;
  }

  FPS diff() const {
    const int n = (int)this->size();
    FPS ret(max(0, n - 1));
    mint one(1), coeff(1);
    for (int i = 1; i < n; i++) {
      ret[i - 1] = (*this)[i] * coeff;
      coeff += one;
    }
    return ret;
  }

  FPS integral() const {
    const int n = (int)this->size();
    FPS ret(n + 1);
    ret[0] = mint(0);
    if (n > 0) ret[1] = mint(1);
    auto mod = mint::get_mod();
    for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
    for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
    return ret;
  }

  mint eval(mint x) const {
    mint r = 0, w = 1;
    for (auto &v : *this) r += w * v, w *= x;
    return r;
  }

  FPS log(int deg = -1) const {
    assert(!(*this).empty() && (*this)[0] == mint(1));
    if (deg == -1) deg = (int)this->size();
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  FPS pow(int64_t k, int deg = -1) const {
    const int n = (int)this->size();
    if (deg == -1) deg = n;
    if (k == 0) {
      FPS ret(deg);
      if (deg) ret[0] = 1;
      return ret;
    }
    for (int i = 0; i < n; i++) {
      if ((*this)[i] != mint(0)) {
        mint rev = mint(1) / (*this)[i];
        FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
        ret *= (*this)[i].pow(k);
        ret = (ret << (i * k)).pre(deg);
        if ((int)ret.size() < deg) ret.resize(deg, mint(0));
        return ret;
      }
      if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
    }
    return FPS(deg, mint(0));
  }

  static void *ntt_ptr;
  static void set_fft();
  FPS &operator*=(const FPS &r);
  void ntt();
  void intt();
  void ntt_doubling();
  static int ntt_pr();
  FPS inv(int deg = -1) const;
  FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;

template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
  ntt_ptr = nullptr;
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
  exit(1);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
  exit(1);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
  exit(1);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
  exit(1);
}

template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
    const FormalPowerSeries<mint>& r) {
  if (this->empty() || r.empty()) {
    this->clear();
    return *this;
  }
  auto ret = ArbitraryNTT::multiply(*this, r);
  return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
  assert((*this)[0] != mint(0));
  if (deg == -1) deg = (*this).size();
  FormalPowerSeries<mint> ret({mint(1) / (*this)[0]});
  for (int i = 1; i < deg; i <<= 1)
    ret = (ret + ret - ret * ret * (*this).pre(i << 1)).pre(i << 1);
  return ret.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
  assert((*this).size() == 0 || (*this)[0] == mint(0));
  if (deg == -1) deg = (int)this->size();
  FormalPowerSeries<mint> ret({mint(1)});
  for (int i = 1; i < deg; i <<= 1) {
    ret = (ret * (pre(i << 1) + mint(1) - ret.log(i << 1))).pre(i << 1);
  }
  return ret.pre(deg);
}

using mint = LazyMontgomeryModInt<998244353>;
using fps = FormalPowerSeries<mint>;

template <typename mint>
vector<mint> BerlekampMassey(const vector<mint> &s) {
  const int N = (int)s.size();
  vector<mint> b, c;
  b.reserve(N + 1);
  c.reserve(N + 1);
  b.push_back(mint(1));
  c.push_back(mint(1));
  mint y = mint(1);
  for (int ed = 1; ed <= N; ed++) {
    int l = int(c.size()), m = int(b.size());
    mint x = 0;
    for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];
    b.emplace_back(mint(0));
    m++;
    if (x == mint(0)) continue;
    mint freq = x / y;
    if (l < m) {
      auto tmp = c;
      c.insert(begin(c), m - l, mint(0));
      for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];
      b = tmp;
      y = x;
    } else {
      for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];
    }
  }
  reverse(begin(c), end(c));
  return c;
}

template<typename mint>
mint LinearRecurrence(long long k, FormalPowerSeries<mint> Q,
                      FormalPowerSeries<mint> P) {
  Q.shrink();
  mint ret = 0;
  if (P.size() >= Q.size()) {
    auto R = P / Q;
    P -= R * Q;
    P.shrink();
    if (k < (int)R.size()) ret += R[k];
  }
  if ((int)P.size() == 0) return ret;

  FormalPowerSeries<mint>::set_fft();
  if (FormalPowerSeries<mint>::ntt_ptr == nullptr) {
    P.resize((int)Q.size() - 1);
    while (k) {
      auto Q2 = Q;
      for (int i = 1; i < (int)Q2.size(); i += 2) Q2[i] = -Q2[i];
      auto S = P * Q2;
      auto T = Q * Q2;
      if (k & 1) {
        for (int i = 1; i < (int)S.size(); i += 2) P[i >> 1] = S[i];
        for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];
      } else {
        for (int i = 0; i < (int)S.size(); i += 2) P[i >> 1] = S[i];
        for (int i = 0; i < (int)T.size(); i += 2) Q[i >> 1] = T[i];
      }
      k >>= 1;
    }
    return ret + P[0];
  } else {
    int N = 1;
    while (N < (int)Q.size()) N <<= 1;

    P.resize(2 * N);
    Q.resize(2 * N);
    P.ntt();
    Q.ntt();
    vector<mint> S(2 * N), T(2 * N);

    vector<int> btr(N);
    for (int i = 0, logn = __builtin_ctz(N); i < (1 << logn); i++) {
      btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (logn - 1));
    }
    mint dw = mint(FormalPowerSeries<mint>::ntt_pr())
                  .inverse()
                  .pow((mint::get_mod() - 1) / (2 * N));

    while (k) {
      mint inv2 = mint(2).inverse();

      // even degree of Q(x)Q(-x)
      T.resize(N);
      for (int i = 0; i < N; i++) T[i] = Q[(i << 1) | 0] * Q[(i << 1) | 1];

      S.resize(N);
      if (k & 1) {
        // odd degree of P(x)Q(-x)
        for (auto &i : btr) {
          S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] -
                  P[(i << 1) | 1] * Q[(i << 1) | 0]) *
                 inv2;
          inv2 *= dw;
        }
      } else {
        // even degree of P(x)Q(-x)
        for (int i = 0; i < N; i++) {
          S[i] = (P[(i << 1) | 0] * Q[(i << 1) | 1] +
                  P[(i << 1) | 1] * Q[(i << 1) | 0]) *
                 inv2;
        }
      }
      swap(P, S);
      swap(Q, T);
      k >>= 1;
      if (k < N) break;
      P.ntt_doubling();
      Q.ntt_doubling();
    }
    P.intt();
    Q.intt();
    return ret + (P * (Q.inv()))[k];
  }
}

template <typename mint>
mint kitamasa(long long N, FormalPowerSeries<mint> Q,
              FormalPowerSeries<mint> a) {
  assert(!Q.empty() && Q[0] != 0);
  if (N < (int)a.size()) return a[N];
  assert((int)a.size() >= int(Q.size()) - 1);
  auto P = a.pre((int)Q.size() - 1) * Q;
  P.resize(Q.size() - 1);
  return LinearRecurrence<mint>(N, Q, P);
}


template <typename mint>
mint nth_term(long long n, const vector<mint> &s) {
  using fps = FormalPowerSeries<mint>;
  auto bm = BerlekampMassey<mint>(s);
  return kitamasa(n, fps{begin(bm), end(bm)}, fps{begin(s), end(s)});
}



//////////////////////////////////////////////////////////////////////////////////////////

void solve(){
    ll n,k;
    cin>>n>>k;
    vector<mint> fib(1000);
    vector<mint> k_fib(1000);
    fib[0]=1;
    fib[1]=1;
    k_fib[0]=1;
    k_fib[1]=2;
    for(int i=2;i<1000;i++){
        fib[i]=fib[i-1]+fib[i-2];
        k_fib[i]+=POW(fib[i],k)+k_fib[i-1];
    }
    mint ans=nth_term(n-1,k_fib);
    cout<<ans<<endl;
}

signed main(){
	cin.tie(0);
	ios::sync_with_stdio(0);
	cout<<fixed<<setprecision(20);
	int TT; TT = 1; //cin >> TT;
	while(TT--) solve();
}
0