結果
問題 | No.2892 Lime and Karin |
ユーザー | tonegawa |
提出日時 | 2024-09-15 13:21:26 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,107 ms / 8,000 ms |
コード長 | 21,155 bytes |
コンパイル時間 | 2,898 ms |
コンパイル使用メモリ | 177,284 KB |
実行使用メモリ | 105,684 KB |
最終ジャッジ日時 | 2024-09-15 13:21:56 |
合計ジャッジ時間 | 29,246 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 326 ms
36,888 KB |
testcase_15 | AC | 311 ms
35,296 KB |
testcase_16 | AC | 577 ms
54,528 KB |
testcase_17 | AC | 107 ms
16,868 KB |
testcase_18 | AC | 577 ms
54,928 KB |
testcase_19 | AC | 797 ms
71,456 KB |
testcase_20 | AC | 31 ms
7,804 KB |
testcase_21 | AC | 402 ms
42,248 KB |
testcase_22 | AC | 534 ms
52,584 KB |
testcase_23 | AC | 189 ms
25,144 KB |
testcase_24 | AC | 855 ms
72,536 KB |
testcase_25 | AC | 841 ms
72,948 KB |
testcase_26 | AC | 828 ms
72,564 KB |
testcase_27 | AC | 853 ms
72,584 KB |
testcase_28 | AC | 868 ms
71,928 KB |
testcase_29 | AC | 829 ms
72,348 KB |
testcase_30 | AC | 876 ms
73,100 KB |
testcase_31 | AC | 857 ms
72,024 KB |
testcase_32 | AC | 827 ms
72,432 KB |
testcase_33 | AC | 856 ms
72,444 KB |
testcase_34 | AC | 135 ms
64,528 KB |
testcase_35 | AC | 135 ms
64,396 KB |
testcase_36 | AC | 141 ms
64,380 KB |
testcase_37 | AC | 138 ms
64,268 KB |
testcase_38 | AC | 167 ms
64,524 KB |
testcase_39 | AC | 926 ms
99,812 KB |
testcase_40 | AC | 1,049 ms
105,684 KB |
testcase_41 | AC | 1,101 ms
84,392 KB |
testcase_42 | AC | 1,096 ms
89,880 KB |
testcase_43 | AC | 1,107 ms
86,188 KB |
testcase_44 | AC | 219 ms
30,616 KB |
testcase_45 | AC | 652 ms
65,020 KB |
testcase_46 | AC | 273 ms
34,996 KB |
testcase_47 | AC | 410 ms
45,208 KB |
testcase_48 | AC | 148 ms
21,932 KB |
testcase_49 | AC | 524 ms
51,544 KB |
testcase_50 | AC | 396 ms
69,728 KB |
testcase_51 | AC | 416 ms
70,124 KB |
testcase_52 | AC | 446 ms
69,072 KB |
testcase_53 | AC | 456 ms
69,260 KB |
testcase_54 | AC | 448 ms
69,024 KB |
ソースコード
#include <string> #include <iostream> #include <vector> #include <array> #include <tuple> #include <stack> #include <queue> #include <deque> #include <algorithm> #include <set> #include <map> #include <unordered_set> #include <unordered_map> #include <bitset> #include <cmath> #include <functional> #include <cassert> #include <climits> #include <iomanip> #include <numeric> #include <memory> #include <random> #include <thread> #include <chrono> #define allof(obj) (obj).begin(), (obj).end() #define range(i, l, r) for(int i=l;i<r;i++) #define unique_elem(obj) obj.erase(std::unique(allof(obj)), obj.end()) #define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S) #define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit)) #define bit_kth(i, k) ((i >> k)&1) #define bit_highest(i) (i?63-__builtin_clzll(i):-1) #define bit_lowest(i) (i?__builtin_ctzll(i):-1) #define sleepms(t) std::this_thread::sleep_for(std::chrono::milliseconds(t)) using ll = long long; using ld = long double; using ul = uint64_t; using pi = std::pair<int, int>; using pl = std::pair<ll, ll>; using namespace std; template<typename F, typename S> std::ostream &operator << (std::ostream &dest, const std::pair<F, S> &p) { dest << p.first << ' ' << p.second; return dest; } template<typename A, typename B> std::ostream &operator << (std::ostream &dest, const std::tuple<A, B> &t) { dest << std::get<0>(t) << ' ' << std::get<1>(t); return dest; } template<typename A, typename B, typename C> std::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C> &t) { dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t); return dest; } template<typename A, typename B, typename C, typename D> std::ostream &operator << (std::ostream &dest, const std::tuple<A, B, C, D> &t) { dest << std::get<0>(t) << ' ' << std::get<1>(t) << ' ' << std::get<2>(t) << ' ' << std::get<3>(t); return dest; } template<typename T> std::ostream &operator << (std::ostream &dest, const std::vector<std::vector<T>> &v) { int sz = v.size(); if (!sz) return dest; for (int i = 0; i < sz; i++) { int m = v[i].size(); for (int j = 0; j < m; j++) dest << v[i][j] << (i != sz - 1 && j == m - 1 ? '\n' : ' '); } return dest; } template<typename T> std::ostream &operator << (std::ostream &dest, const std::vector<T> &v) { int sz = v.size(); if (!sz) return dest; for (int i = 0; i < sz - 1; i++) dest << v[i] << ' '; dest << v[sz - 1]; return dest; } template<typename T, size_t sz> std::ostream &operator << (std::ostream &dest, const std::array<T, sz> &v) { if (!sz) return dest; for (int i = 0; i < sz - 1; i++) dest << v[i] << ' '; dest << v[sz - 1]; return dest; } template<typename T> std::ostream &operator << (std::ostream &dest, const std::set<T> &v) { for (auto itr = v.begin(); itr != v.end();) { dest << *itr; itr++; if (itr != v.end()) dest << ' '; } return dest; } template<typename T, typename E> std::ostream &operator << (std::ostream &dest, const std::map<T, E> &v) { for (auto itr = v.begin(); itr != v.end(); ) { dest << '(' << itr->first << ", " << itr->second << ')'; itr++; if (itr != v.end()) dest << '\n'; } return dest; } template<typename T> vector<T> make_vec(size_t sz, T val) { return std::vector<T>(sz, val); } template<typename T, typename... Tail> auto make_vec(size_t sz, Tail ...tail) { return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...)); } template<typename T> vector<T> read_vec(size_t sz) { std::vector<T> v(sz); for (int i = 0; i < (int)sz; i++) std::cin >> v[i]; return v; } template<typename T, typename... Tail> auto read_vec(size_t sz, Tail ...tail) { auto v = std::vector<decltype(read_vec<T>(tail...))>(sz); for (int i = 0; i < (int)sz; i++) v[i] = read_vec<T>(tail...); return v; } // x / y以上の最小の整数 ll ceil_div(ll x, ll y) { assert(y > 0); return (x + (x > 0 ? y - 1 : 0)) / y; } // x / y以下の最大の整数 ll floor_div(ll x, ll y) { assert(y > 0); return (x + (x > 0 ? 0 : -y + 1)) / y; } void io_init() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } template<typename _W> struct edge_base { using W = _W; int t; edge_base() {} edge_base(int _t) : t(_t) {} virtual int from() const { assert(false); } int to() const { return t; } virtual W weight() const { assert(false); } operator int() const { return t; } }; struct simple_edge : edge_base<int> { simple_edge() {} simple_edge(int _t) : edge_base<int>(_t) {} int weight() const override { return 1; } }; template<typename _W> struct weighted_edge : edge_base<_W> { using W = _W; W w; weighted_edge() {} weighted_edge(int _t, _W _w) : edge_base<_W>(_t), w(_w) {} W weight() const override { return w; } }; template <class E> struct csr { std::vector<int> start; std::vector<E> elist; csr() {} explicit csr(int n, const std::vector<std::pair<int, E>>& edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } ~csr() {} int N() const { return start.size() - 1; } int deg(int i) const { return start[i + 1] - start[i]; } int begin(int i) const { return start[i]; } int end(int i) const { return start[i + 1]; } E& operator [] (int i) { return elist[i]; } }; template<typename edge = int> struct hld { int N, root; csr<edge> G; std::vector<int> sz, dep, par, head; std::vector<int> tour, in, out; hld() : N(0) {} hld(int root, const csr<edge> &_G) : N(_G.N()), root(root), G(_G), sz(N), dep(N), par(N), head(N), tour(N), in(N), out(N) { auto dfs_sz = [&](auto &&dfs_sz, int v, int p, int d) -> void { sz[v] = 1, dep[v] = d, par[v] = p; int L = G.begin(v); for (int i = L; i < G.end(v); i++) { int to = G.elist[i]; if (to == p) continue; dfs_sz(dfs_sz, to, v, d + 1); sz[v] += sz[to]; int hc = G.elist[L]; if (hc == p || sz[hc] < sz[to]) { std::swap(G.elist[L], G.elist[i]); } } }; int t = 0; auto dfs_tour = [&](auto &&dfs_tour, int v, int p) -> void { in[v] = t; tour[t++] = v; int L = G.begin(v); for (int i = L; i < G.end(v); i++) { int to = G.elist[i]; if (to == p) continue; if (i == L) { head[to] = head[v]; } else { head[to] = to; } dfs_tour(dfs_tour, to, v); } out[v] = t; }; head[root] = root; dfs_sz(dfs_sz, root, -1, 0); dfs_tour(dfs_tour, root, -1); } // k個上の祖先, k > depth[v]なら-1 int la(int v, int k) { if (dep[v] < k) return -1; while (true) { int u = head[v]; if (in[v] - in[u] >= k) return tour[in[v] - k]; k -= in[v] - in[u] + 1; v = par[u]; } } int lca(int u, int v) { while (true) { if (in[u] > in[v]) std::swap(u, v); if (head[u] == head[v]) return u; v = par[head[v]]; } } int dist(int s, int t) { int p = lca(s, t); return dep[s] + dep[t] - 2 * dep[p]; } // 0 <= k <= dist(s, t) でない場合-1 int jump_on_tree(int s, int t, int k) { int p = lca(s, t); int sp = dep[s] - dep[p]; if (k <= sp) { return la(s, k); } else { int pt = dep[t] - dep[p]; if (k > sp + pt) return -1; return la(t, sp + pt - k); } } // pの部分木がcを含むか bool contain_subtree(int p, int c) { if (dep[p] > dep[c]) return false; return p == la(c, dep[c] - dep[p]); } // s->tパス(端点も含む)がvを含むか bool contain_path(int s, int t, int v){ if (lca(s, t) == v) return true; return contain_subtree(v, s) ^ contain_subtree(v, t); } int ord_point(int v) { return in[v]; } // [l, r) std::pair<int, int> ord_subtree(int v) { return {in[v], out[v]}; } // O(logN)個の区間でパスを表す // 各区間はl < rまたはl > rを満たし // l < rなら上から下に降りる順番 // l > rなら下から上に登る順番 // (s -> t パスの順序を保っている) std::vector<std::pair<int, int>> ord_path(int s, int t) { std::vector<std::pair<int, int>> up, down; while (head[s] != head[t]) { if (in[s] < in[t]) { down.push_back({in[head[t]], in[t] + 1}); t = par[head[t]]; } else { up.push_back({in[s] + 1, in[head[s]]}); s = par[head[s]]; } } if (in[s] < in[t]) { down.push_back({in[s], in[t] + 1}); } else { up.push_back({in[s] + 1, in[t]}); } std::reverse(down.begin(), down.end()); up.insert(up.end(), down.begin(), down.end()); return up; } // l < rなら上から下に降りる順番 // l > rなら下から上に登る順番 // (s -> t パスの順序を保っていない, 区間と向きは合っている) template<typename F> void query_path(int s, int t, F f) { while (head[s] != head[t]) { if (in[s] < in[t]) { f(in[head[t]], in[t] + 1); t = par[head[t]]; } else { f(in[s] + 1, in[head[s]]); s = par[head[s]]; } } if (in[s] < in[t]) { f(in[s], in[t] + 1); } else { f(in[s] + 1, in[t]); } } // F := [l, r)のモノイド積を得る関数 template<typename S, S (*op)(S, S), S (*e)(), S (*flip)(S), typename F> S prod_path(int s, int t, F f) { S sl = e(), sr = e(); query_path(s, t, [&](int l, int r) { if (l > r) { sl = op(sl, flip(f(r, l))); } else { sr = op(f(l, r), sr); } }); return op(sl, sr); } // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}. std::pair<int, int> intersection_path(int a, int b, int c, int d) { int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d); int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d); int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; if (x != y) return {x, y}; int z = ac ^ ad ^ cd; if (x != z) x = -1; return {x, x}; } // {頂点集合(in順), 辺集合} std::pair<std::vector<int>, std::vector<std::pair<int, int>>> auxiliary_tree(std::vector<int> v) { if (v.empty()) return {{}, {}}; std::sort(v.begin(), v.end(), [&](int a, int b) {return in[a] < in[b]; }); std::vector<int> V; std::vector<std::pair<int, int>> E; std::vector<int> st; st.push_back(v[0]); for (int i = 1; i < v.size(); i++) { if (v[i] == v[i - 1]) continue; int l = lca(v[i], v[i - 1]); while (true) { int c = st.back(); st.pop_back(); if (st.empty() || dep[st.back()] < dep[l]) { st.push_back(l); st.push_back(v[i]); if (dep[c] > dep[l]) { E.push_back({l, c}); V.push_back(c); } break; } E.push_back({st.back(), c}); V.push_back(c); } } while (st.size() >= 2) { int c = st.back(); st.pop_back(); int p = st.back(); E.push_back({p, c}); V.push_back(c); } V.push_back(st[0]); return {V, E}; } }; // 重心を再帰的に繋いだ木を作る template<typename edge = int> struct centroid { int N; csr<int> G; std::vector<int> sz, dep, par; centroid() : N(0) {} centroid(const csr<edge> &g) : N(g.N()), sz(N, 0), dep(N, N), par(N, -1) { std::vector<std::pair<int, int>> E; auto add_edge = [&](int p, int c) -> void { E.push_back({p, c}); par[c] = p; }; auto dfs = [&](auto &&dfs, int v, int p, const int M, const int rank) -> std::pair<int, int> { int size = 1; for (int i = g.begin(v); i < g.end(v); i++) { int to = g.elist[i]; if (to == p || dep[to] < rank) continue; auto [sz_c, cent_c] = dfs(dfs, to, v, M, rank); if (sz_c == -1) return {-1, cent_c}; sz[to] = sz_c; size += sz_c; } if(size * 2 >= M){ sz[v] = M; dep[v] = rank; for (int i = g.begin(v); i < g.end(v); i++) { int to = g.elist[i]; if (to == p || dep[to] < rank) continue; auto [sz_c, cent_c] = dfs(dfs, to, -1, sz[to], rank + 1); add_edge(v, cent_c); } if (p != -1) { auto [sz_c, cent_c] = dfs(dfs, p, -1, M - size, rank + 1); add_edge(v, cent_c); } return {-1, v}; } return {size, -1}; }; dfs(dfs, 0, -1, N, 0); G = csr<int>(N, E); } // 元の木のパスが重心木でa, bを含む場合lca(a, b)も含む // ランク最小の頂点は1個 // s-tパスのランク最小の頂点はlca(s, t) int lca(int a, int b) { if (dep[a] > dep[b]) std::swap(a, b); while (dep[a] < dep[b]) b = par[b]; while (a != b) { a = par[a]; b = par[b]; } return a; } }; template<typename Idx, typename T> struct fenwick_tree_sparse { private: int N; std::vector<Idx> I; std::vector<T> V; public: fenwick_tree_sparse() {} // idxの昇順にソート済 fenwick_tree_sparse(const std::vector<std::pair<Idx, T>> &v): I(1, std::numeric_limits<Idx>::min()), V(1, 0) { for (int i = 0; i < v.size(); i++) { assert(I.back() <= v[i].first); if (I.back() == v[i].first) { V.back() += v[i].second; } else { I.push_back(v[i].first); V.push_back(v[i].second); } } N = I.size() - 1; for (int i = 1; i <= N; i++) { int nxt = i + (i & (-i)); if (nxt <= N) V[nxt] += V[i]; } } int size() { return N; } // V[k] <- op(V[k], x) // kを事前に追加していない場合エラー void apply(Idx k, T x) { auto itr = std::lower_bound(I.begin(), I.end(), k); assert(itr != I.end() && *itr == k); int l = itr - I.begin(); for (int i = l; i <= N; i += (i & (-i))) { V[i] += x; } } // k番目に小さい点にx足す void apply_raw(int k, T x) { for (int i = k + 1; i <= N; i += (i & (-i))) { V[i] += x; } } // prod[0, r) T prod(Idx R) { int r = std::lower_bound(I.begin(), I.end(), R) - I.begin() - 1; T res = 0; for (int k = r; k > 0; k -= (k & (-k))) { res = op(V[k], res); } return res; } // 逆元がある必要がある T prod(Idx L, Idx R) { if (L >= R) return 0; int r = std::lower_bound(I.begin(), I.end(), R) - I.begin() - 1; int l = std::lower_bound(I.begin(), I.end(), L) - I.begin() - 1; if (l >= r) return 0; T res = 0; while ((r | l) != l) { res += V[r]; r -= (r & (-r)); } while (l > r) { res -= V[l]; l -= (l & (-l)); } return res; } }; string S; template<typename T, typename edge> struct contour_sum_weighted { using W = typename edge::W; hld<edge> H; centroid<edge> C; std::vector<int> O; std::vector<std::vector<W>> D; std::vector<fenwick_tree_sparse<W, T>> FT; std::vector<std::vector<fenwick_tree_sparse<W, T>>> FTc; contour_sum_weighted() {} contour_sum_weighted(const hld<edge> &_H, const centroid<edge> &_C, const std::vector<T> &X) : H(_H), C(_C), O(C.N), D(C.N), FT(C.N), FTc(C.N) { int N = C.N; int root = -1; for (int i = 0; i < N; i++) { if (C.par[i] == -1) { root = i; break; } } for (int i = 0; i < N; i++) { D[i].push_back(0); for (int j = C.G.begin(i); j < C.G.end(i); j++) { int k = C.G.elist[j]; O[k] = j - C.G.begin(i); } } std::vector<W> wsum(N); wsum[H.root] = (S[H.root] == '1' ? 1 : -1); auto dfs_w = [&](auto &&dfs_w, int v, int p) -> void { for (int i = H.G.begin(v); i < H.G.end(v); i++) { int to = H.G.elist[i]; if (to == p) continue; wsum[to] = wsum[v] + H.G.elist[i].weight(); dfs_w(dfs_w, to, v); } }; dfs_w(dfs_w, H.root, -1); auto dfs = [&](auto &&dfs, int v) -> std::vector<int> { std::vector<int> res{v}; std::vector<std::pair<W, T>> tmp{{S[v] == '1' ? 1 : -1, X[v]}}; FTc[v].resize(C.G.end(v) - C.G.begin(v)); for (int i = C.G.begin(v); i < C.G.end(v); i++) { int c = C.G.elist[i]; auto V = dfs(dfs, c); std::vector<std::pair<W, T>> tmpc; for (int c : V) { int L = H.lca(c, v); W dist1 = wsum[c] + wsum[v] - 2 * wsum[L]; W dist2 = dist1 + (S[L] == '1' ? 1 : -1); W dist3 = dist2 - (S[v] == '1' ? 1 : -1); tmp.push_back({dist2, X[c]}); tmpc.push_back({dist2, X[c]}); D[c].push_back(dist3); } if (res.size() < V.size()) res.swap(V); res.insert(res.end(), V.begin(), V.end()); std::sort(tmpc.begin(), tmpc.end()); FTc[v][i - C.G.begin(v)] = fenwick_tree_sparse<W, T>(tmpc); } std::sort(tmp.begin(), tmp.end()); FT[v] = fenwick_tree_sparse<W, T>(tmp); return res; }; dfs(dfs, root); } // vとの距離がl以上r未満の頂点の重みの和 T sum(int v, W l, W r) { T res = 0; int p = v, c = -1; for (int i = 0; i < D[v].size(); i++, c = p, p = C.par[p]) { W dist = D[v][i]; res += FT[p].prod(l - dist, r - dist); if (i) { int ord = O[c]; res -= FTc[p][ord].prod(l - dist, r - dist); } } return res; } }; int main() { io_init(); int N; std::cin >> N; std::vector<std::pair<int, int>> E1; range(i, 0, N - 1) { int a, b; std::cin >> a >> b; a--, b--; E1.push_back({a, b}); E1.push_back({b, a}); } std::cin >> S; csr<int> G1(N, E1); std::vector<std::pair<int, weighted_edge<int>>> E2; auto f = [&](auto &&f, int v, int p) -> void { for (int i = G1.begin(v); i < G1.end(v); i++) { int to = G1.elist[i]; if (to == p) continue; E2.push_back({v, {to, S[to] == '1' ? 1 : -1}}); E2.push_back({to, {v, S[to] == '1' ? 1 : -1}}); f(f, to, v); } }; f(f, 0, -1); csr<weighted_edge<int>> G2(N, E2); hld<weighted_edge<int>> H(0, G2); centroid<weighted_edge<int>> C(G2); contour_sum_weighted<int, weighted_edge<int>> CS(H, C, std::vector<int>(N, 1)); ll ans = 0; int cnt = 0; for (int i = 0; i < N; i++) { cnt += S[i] == '1'; //std::cout << i << '\n'; //for (int j = -3; j <= 3; j++) std::cout << CS.sum(i, j, j + 1) << ' '; //std::cout << '\n'; ans += CS.sum(i, 1, 2 * N); } // std::cout << ans << " " << cnt << '\n'; std::cout << (ans - cnt) / 2 + cnt << '\n'; }