結果

問題 No.1054 Union add query
ユーザー kemunikukemuniku
提出日時 2024-09-16 02:37:34
言語 Nim
(2.0.2)
結果
AC  
実行時間 826 ms / 2,000 ms
コード長 30,979 bytes
コンパイル時間 4,555 ms
コンパイル使用メモリ 81,280 KB
実行使用メモリ 122,624 KB
最終ジャッジ日時 2024-09-16 02:37:46
合計ジャッジ時間 11,613 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 552 ms
61,312 KB
testcase_04 AC 826 ms
122,624 KB
testcase_05 AC 485 ms
53,760 KB
testcase_06 AC 446 ms
89,728 KB
testcase_07 AC 396 ms
89,984 KB
testcase_08 AC 440 ms
89,856 KB
testcase_09 AC 761 ms
95,616 KB
testcase_10 AC 477 ms
95,488 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2])
# source: src/cplib/tree/heavylightdecomposition.nim
ImportExpand "cplib/tree/heavylightdecomposition" <=== "when not declared CPLIB_TREE_HLD:\n    const CPLIB_TREE_HLD* = 1\n    import sequtils\n    import algorithm\n    import sets\n    when not declared CPLIB_GRAPH_GRAPH:\n        const CPLIB_GRAPH_GRAPH* = 1\n    \n        import sequtils\n        import math\n        type DynamicGraph*[T] = ref object of RootObj\n            edges*: seq[seq[(int32, T)]]\n            len*: int\n        type StaticGraph*[T] = ref object of RootObj\n            src*, dst*: seq[int32]\n            cost*: seq[T]\n            elist*: seq[(int32, T)]\n            start*: seq[int32]\n            len*: int\n    \n        type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]\n        type WeightedUnDirectedGraph*[T] = ref object of DynamicGraph[T]\n        type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]\n        type UnWeightedUnDirectedGraph* = ref object of DynamicGraph[int]\n        type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n        type WeightedUnDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n        type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]\n        type UnWeightedUnDirectedStaticGraph* = ref object of StaticGraph[int]\n    \n        type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]\n        type DirectedGraph* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph\n        type UnDirectedGraph* = WeightedUnDirectedGraph or UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n        type WeightedGraph*[T] = WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]\n        type UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n        type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph\n        type StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n    \n        proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =\n            g.edges[u].add((v.int32, cost))\n            if not directed: g.edges[v].add((u.int32, cost))\n    \n        proc initWeightedDirectedGraph*(N: int, edgetype: typedesc = int): WeightedDirectedGraph[edgetype] =\n            result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n        proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n            g.add_edge_dynamic_impl(u, v, cost, true)\n    \n        proc initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n            result = WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n        proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v: int, cost: T) =\n            g.add_edge_dynamic_impl(u, v, cost, false)\n    \n        proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph =\n            result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n        proc add_edge*(g: var UnWeightedDirectedGraph, u, v: int) =\n            g.add_edge_dynamic_impl(u, v, 1, true)\n    \n        proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n            result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n        proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int) =\n            g.add_edge_dynamic_impl(u, v, 1, false)\n    \n        proc len*[T](G: WeightedGraph[T]): int = G.len\n        proc len*(G: UnWeightedGraph): int = G.len\n    \n        iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =\n            for e in g.edges[x]: yield (e[0].int, e[1])\n        iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =\n            for e in g.edges[x]: yield e[0].int\n    \n        proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =\n            g.src.add(u.int32)\n            g.dst.add(v.int32)\n            g.cost.add(cost)\n            if not directed:\n                g.src.add(v.int32)\n                g.dst.add(u.int32)\n                g.cost.add(cost)\n    \n        proc build_impl*[T](g: StaticGraph[T]) =\n            g.start = newSeqWith(g.len + 1, 0.int32)\n            for i in 0..<g.src.len:\n                g.start[g.src[i]] += 1\n            g.start.cumsum\n            g.elist = newSeq[(int32, T)](g.start[^1])\n            for i in countdown(g.src.len - 1, 0):\n                var u = g.src[i]\n                var v = g.dst[i]\n                g.start[u] -= 1\n                g.elist[g.start[u]] = (v, g.cost[i])\n        proc build*(g: StaticGraphTypes) = g.build_impl()\n    \n        proc initWeightedDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedDirectedStaticGraph[edgetype] =\n            result = WeightedDirectedStaticGraph[edgetype](\n                src: newSeqOfCap[int32](capacity),\n                dst: newSeqOfCap[int32](capacity),\n                cost: newSeqOfCap[edgetype](capacity),\n                elist: newSeq[(int32, edgetype)](0),\n                start: newSeq[int32](0),\n                len: N\n            )\n        proc add_edge*[T](g: var WeightedDirectedStaticGraph[T], u, v: int, cost: T) =\n            g.add_edge_static_impl(u, v, cost, true)\n    \n        proc initWeightedUnDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedUnDirectedStaticGraph[edgetype] =\n            result = WeightedUnDirectedStaticGraph[edgetype](\n                src: newSeqOfCap[int32](capacity*2),\n                dst: newSeqOfCap[int32](capacity*2),\n                cost: newSeqOfCap[edgetype](capacity*2),\n                elist: newSeq[(int32, edgetype)](0),\n                start: newSeq[int32](0),\n                len: N\n            )\n        proc add_edge*[T](g: var WeightedUnDirectedStaticGraph[T], u, v: int, cost: T) =\n            g.add_edge_static_impl(u, v, cost, false)\n    \n        proc initUnWeightedDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedDirectedStaticGraph =\n            result = UnWeightedDirectedStaticGraph(\n                src: newSeqOfCap[int32](capacity),\n                dst: newSeqOfCap[int32](capacity),\n                cost: newSeqOfCap[int](capacity),\n                elist: newSeq[(int32, int)](0),\n                start: newSeq[int32](0),\n                len: N\n            )\n        proc add_edge*(g: var UnWeightedDirectedStaticGraph, u, v: int) =\n            g.add_edge_static_impl(u, v, 1, true)\n    \n        proc initUnWeightedUnDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedUnDirectedStaticGraph =\n            result = UnWeightedUnDirectedStaticGraph(\n                src: newSeqOfCap[int32](capacity*2),\n                dst: newSeqOfCap[int32](capacity*2),\n                cost: newSeqOfCap[int](capacity*2),\n                elist: newSeq[(int32, int)](0),\n                start: newSeq[int32](0),\n                len: N\n            )\n        proc add_edge*(g: var UnWeightedUnDirectedStaticGraph, u, v: int) =\n            g.add_edge_static_impl(u, v, 1, false)\n    \n        proc static_graph_initialized_check*[T](g: StaticGraph[T]) = assert g.start.len > 0, \"Static Graph must be initialized before use.\"\n    \n        iterator `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =\n            g.static_graph_initialized_check()\n            for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n        iterator `[]`*(g: UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph, x: int): int =\n            g.static_graph_initialized_check()\n            for i in g.start[x]..<g.start[x+1]: yield g.elist[i][0].int\n    \n        iterator to_and_cost*[T](g: DynamicGraph[T], x: int): (int, T) =\n            for e in g.edges[x]: yield (e[0].int, e[1])\n        iterator to_and_cost*[T](g: StaticGraph[T], x: int): (int, T) =\n            g.static_graph_initialized_check()\n            for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n    \n    # https://atcoder.jp/contests/abc337/submissions/50216964\n    # ↑上記の提出より引用\n    type HeavyLightDecomposition* = object\n        N*: int\n        P*, PP*, PD*, D*, I*, rangeL*, rangeR*: seq[int]\n    proc initHld*(g: UnDirectedGraph, root: int): HeavyLightDecomposition =\n        var hld = HeavyLightDecomposition()\n        var n: int = g.len\n        hld.N = n\n        hld.P = newSeqWith(n, -1)\n        hld.I = newSeqWith(n, 0)\n        hld.I[0] = root\n        var iI = 1\n        for i in 0..<n:\n            var p = hld.I[i]\n            for e in g[p]:\n                if hld.P[p] != e:\n                    hld.I[iI] = e\n                    hld.P[e] = p\n                    iI += 1\n        var Z = newSeqWith(n, 1)\n        var nx = newSeqWith(n, -1)\n        hld.PP = newSeqWith(n, 0)\n        for i in 0..<n:\n            hld.PP[i] = i\n        for i in 1..<n:\n            var p = hld.I[n-i]\n            Z[hld.P[p]] += Z[p]\n            if nx[hld.P[p]] == -1 or Z[nx[hld.P[p]]] < Z[p]:\n                nx[hld.P[p]] = p\n        for p in hld.I:\n            if nx[p] != -1:\n                hld.PP[nx[p]] = p\n        hld.PD = newSeqWith(n, n)\n        hld.PD[root] = 0\n        hld.D = newSeqWith(n, 0)\n        for p in hld.I:\n            if p != root:\n                hld.PP[p] = hld.PP[hld.PP[p]]\n                hld.PD[p] = min(hld.PD[hld.PP[p]], hld.PD[hld.P[p]]+1)\n                hld.D[p] = hld.D[hld.P[p]]+1\n        hld.rangeL = newSeqWith(n, 0)\n        hld.rangeR = newSeqWith(n, 0)\n        for p in hld.I:\n            hld.rangeR[p] = hld.rangeL[p] + Z[p]\n            var ir = hld.rangeR[p]\n            for e in g[p]:\n                if hld.P[p] != e and e != nx[p]:\n                    ir -= Z[e]\n                    hld.rangeL[e] = ir\n            if nx[p] != -1:\n                hld.rangeL[nx[p]] = hld.rangeL[p] + 1\n        for i in 0..<n:\n            hld.I[hld.rangeL[i]] = i\n        return hld\n    proc initHld*(g: DirectedGraph, root: int): HeavyLightDecomposition =\n        var n = g.len\n        var gn = initUnWeightedUnDirectedStaticGraph(n)\n        var seen = initHashSet[(int, int)]()\n        for i in 0..<n:\n            for (j, _) in g[i]:\n                if (i, j) notin seen:\n                    gn.add_edge(i, j)\n                    seen.incl((i, j))\n                    seen.incl((j, i))\n        gn.build\n        return initHld(gn, root)\n    proc initHld*(adj: seq[seq[int]], root: int): HeavyLightDecomposition =\n        var n = adj.len\n        var gn = initUnWeightedUnDirectedStaticGraph(n)\n        var seen = initHashSet[(int, int)]()\n        for i in 0..<n:\n            for j in adj[i]:\n                if (i, j) notin seen:\n                    gn.add_edge(i, j)\n                    seen.incl((i, j))\n                    seen.incl((j, i))\n        gn.build\n        return initHld(gn, root)\n    proc numVertices*(hld: HeavyLightDecomposition): int = hld.N\n    proc depth*(hld: HeavyLightDecomposition, p: int): int = hld.D[p]\n    proc toSeq*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeL[vtx]\n    proc toVtx*(hld: HeavyLightDecomposition, seqidx: int): int = hld.I[seqidx]\n    proc toSeq2In*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeL[vtx] * 2 - hld.D[vtx]\n    proc toSeq2Out*(hld: HeavyLightDecomposition, vtx: int): int = hld.rangeR[vtx] * 2 - hld.D[vtx] - 1\n    proc parentOf*(hld: HeavyLightDecomposition, v: int): int = hld.P[v]\n    proc heavyRootOf*(hld: HeavyLightDecomposition, v: int): int = hld.PP[v]\n    proc heavyChildOf*(hld: HeavyLightDecomposition, v: int): int =\n        if hld.toSeq(v) == hld.N-1:\n            return -1\n        var cand = hld.toVtx(hld.toSeq(v) + 1)\n        if hld.PP[v] == hld.PP[cand]:\n            return cand\n        -1\n    proc lca*(hld: HeavyLightDecomposition, u: int, v: int): int =\n        var (u, v) = (u, v)\n        if hld.PD[u] < hld.PD[v]:\n            swap(u, v)\n        while hld.PD[u] > hld.PD[v]:\n            u = hld.P[hld.PP[u]]\n        while hld.PP[u] != hld.PP[v]:\n            u = hld.P[hld.PP[u]]\n            v = hld.P[hld.PP[v]]\n        if hld.D[u] > hld.D[v]:\n            return v\n        u\n    proc dist*(hld: HeavyLightDecomposition, u: int, v: int): int =\n        hld.depth(u) + hld.depth(v) - hld.depth(hld.lca(u, v)) * 2\n    proc path*(hld: HeavyLightDecomposition, r: int, c: int, include_root: bool, reverse_path: bool): seq[(int, int)] =\n        var (r, c) = (r, c)\n        var k = hld.PD[c] - hld.PD[r] + 1\n        if k <= 0:\n            return @[]\n        var res = newSeqWith(k, (0, 0))\n        for i in 0..<k-1:\n            res[i] = (hld.rangeL[hld.PP[c]], hld.rangeL[c] + 1)\n            c = hld.P[hld.PP[c]]\n        if hld.PP[r] != hld.PP[c] or hld.D[r] > hld.D[c]:\n            return @[]\n        var root_off = int(not include_root)\n        res[^1] = (hld.rangeL[r]+root_off, hld.rangeL[c]+1)\n        if res[^1][0] == res[^1][1]:\n            discard res.pop()\n            k -= 1\n        if reverse_path:\n            for i in 0..<k:\n                res[i] = (hld.N - res[i][1], hld.N - res[i][0])\n        else:\n            res.reverse()\n        res\n    proc subtree*(hld: HeavyLightDecomposition, p: int): (int, int) = (hld.rangeL[p], hld.rangeR[p])\n    proc median*(hld: HeavyLightDecomposition, x: int, y: int, z: int): int =\n        hld.lca(x, y) xor hld.lca(y, z) xor hld.lca(x, z)\n    proc la*(hld: HeavyLightDecomposition, starting: int, goal: int, d: int): int =\n        var (u, v, d) = (starting, goal, d)\n        if d < 0:\n            return -1\n        var g = hld.lca(u, v)\n        var dist0 = hld.D[u] - hld.D[g] * 2 + hld.D[v]\n        if dist0 < d:\n            return -1\n        var p = u\n        if hld.D[u] - hld.D[g] < d:\n            p = v\n            d = dist0 - d\n        while hld.D[p] - hld.D[hld.PP[p]] < d:\n            d -= hld.D[p] - hld.D[hld.PP[p]] + 1\n            p = hld.P[hld.PP[p]]\n        hld.I[hld.rangeL[p] - d]\n    iterator children*(hld: HeavyLightDecomposition, v: int): int =\n        var s = hld.rangeL[v] + 1\n        while s < hld.rangeR[v]:\n            var w = hld.toVtx(s)\n            yield w\n            s += hld.rangeR[w] - hld.rangeL[w]\n"
# source: src/cplib/collections/unionfind.nim
ImportExpand "cplib/collections/unionfind" <=== "when not declared CPLIB_COLLECTIONS_UNIONFIND:\n    const CPLIB_COLLECTIONS_UNIONFIND* = 1\n    import algorithm\n    import sequtils\n    type UnionFind* = ref object\n        count*: int\n        par_or_siz: seq[int]\n    proc initUnionFind*(N: int): UnionFind =\n        result = UnionFind(count: N, par_or_siz: newSeqwith(N, -1))\n    proc root*(self: UnionFind, x: int): int =\n        if self.par_or_siz[x] < 0:\n            return x\n        else:\n            self.par_or_siz[x] = self.root(self.par_or_siz[x])\n            return self.par_or_siz[x]\n    proc issame*(self: UnionFind, x: int, y: int): bool =\n        return self.root(x) == self.root(y)\n    proc unite*(self: UnionFind, x: int, y: int) =\n        var x = self.root(x)\n        var y = self.root(y)\n        if(x != y):\n            if(self.par_or_siz[x] > self.par_or_siz[y]):\n                swap(x, y)\n            self.par_or_siz[x] += self.par_or_siz[y]\n            self.par_or_siz[y] = x\n            self.count -= 1\n    proc siz*(self: UnionFind, x: int): int =\n        var x = self.root(x)\n        return -self.par_or_siz[x]\n"
# source: src/cplib/tmpl/sheep.nim
ImportExpand "cplib/tmpl/sheep" <=== "when not declared CPLIB_TMPL_SHEEP:\n    const CPLIB_TMPL_SHEEP* = 1\n    {.warning[UnusedImport]: off.}\n    {.hint[XDeclaredButNotUsed]: off.}\n    import algorithm\n    import sequtils\n    import tables\n    import macros\n    import math\n    import sets\n    import strutils\n    import strformat\n    import sugar\n    import heapqueue\n    import streams\n    import deques\n    import bitops\n    import std/lenientops\n    import options\n    #入力系\n    proc scanf(formatstr: cstring){.header: \"<stdio.h>\", varargs.}\n    proc getchar(): char {.importc: \"getchar_unlocked\", header: \"<stdio.h>\", discardable.}\n    proc ii(): int {.inline.} = scanf(\"%lld\\n\", addr result)\n    proc lii(N: int): seq[int] {.inline.} = newSeqWith(N, ii())\n    proc si(): string {.inline.} =\n        result = \"\"\n        var c: char\n        while true:\n            c = getchar()\n            if c == ' ' or c == '\\n':\n                break\n            result &= c\n    #chmin,chmax\n    template `max=`(x, y) = x = max(x, y)\n    template `min=`(x, y) = x = min(x, y)\n    #bit演算\n    proc `%`*(x: int, y: int): int =\n        result = x mod y\n        if y > 0 and result < 0: result += y\n        if y < 0 and result > 0: result += y\n    proc `//`*(x: int, y: int): int{.inline.} =\n        result = x div y\n        if y > 0 and result * y > x: result -= 1\n        if y < 0 and result * y < x: result -= 1\n    proc `%=`(x: var int, y: int): void = x = x%y\n    proc `//=`(x: var int, y: int): void = x = x//y\n    proc `**`(x: int, y: int): int = x^y\n    proc `**=`(x: var int, y: int): void = x = x^y\n    proc `^`(x: int, y: int): int = x xor y\n    proc `|`(x: int, y: int): int = x or y\n    proc `&`(x: int, y: int): int = x and y\n    proc `>>`(x: int, y: int): int = x shr y\n    proc `<<`(x: int, y: int): int = x shl y\n    proc `~`(x: int): int = not x\n    proc `^=`(x: var int, y: int): void = x = x ^ y\n    proc `&=`(x: var int, y: int): void = x = x & y\n    proc `|=`(x: var int, y: int): void = x = x | y\n    proc `>>=`(x: var int, y: int): void = x = x >> y\n    proc `<<=`(x: var int, y: int): void = x = x << y\n    proc `[]`(x: int, n: int): bool = (x and (1 shl n)) != 0\n    #便利な変換\n    proc `!`(x: char, a = '0'): int = int(x)-int(a)\n    #定数\n    when not declared CPLIB_UTILS_CONSTANTS:\n        const CPLIB_UTILS_CONSTANTS* = 1\n        const INF32*: int32 = 100100111.int32\n        const INF64*: int = int(3300300300300300491)\n    \n    const INF = INF64\n    #converter\n\n    #range\n    iterator range(start: int, ends: int, step: int): int =\n        var i = start\n        if step < 0:\n            while i > ends:\n                yield i\n                i += step\n        elif step > 0:\n            while i < ends:\n                yield i\n                i += step\n    iterator range(ends: int): int = (for i in 0..<ends: yield i)\n    iterator range(start: int, ends: int): int = (for i in\n            start..<ends: yield i)\n\n    #joinが非stringでめちゃくちゃ遅いやつのパッチ\n    proc join*[T: not string](a: openArray[T], sep: string = \"\"): string = a.mapit($it).join(sep)\n"
# source: src/atcoder/lazysegtree.nim
ImportExpand "atcoder/lazysegtree" <=== "when not declared ATCODER_LAZYSEGTREE_HPP:\n  const ATCODER_LAZYSEGTREE_HPP* = 1\n  \n  when not declared ATCODER_INTERNAL_BITOP_HPP:\n    const ATCODER_INTERNAL_BITOP_HPP* = 1\n    import std/bitops\n  \n  #ifdef _MSC_VER\n  #include <intrin.h>\n  #endif\n  \n  # @param n `0 <= n`\n  # @return minimum non-negative `x` s.t. `n <= 2**x`\n    proc ceil_pow2*(n:SomeInteger):int =\n      var x = 0\n      while (1.uint shl x) < n.uint: x.inc\n      return x\n  # @param n `1 <= n`\n  # @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`\n    proc bsf*(n:SomeInteger):int =\n      return countTrailingZeroBits(n)\n  \n  when not declared ATCODER_RANGEUTILS_HPP:\n    const ATCODER_RANGEUTILS_HPP* = 1\n    type RangeType* = Slice[int] | HSlice[int, BackwardsIndex] | Slice[BackwardsIndex]\n    type IndexType* = int | BackwardsIndex\n    template halfOpenEndpoints*(p:Slice[int]):(int,int) = (p.a, p.b + 1)\n    template `^^`*(s, i: untyped): untyped =\n      (when i is BackwardsIndex: s.len - int(i) else: int(i))\n    template halfOpenEndpoints*[T](s:T, p:RangeType):(int,int) =\n      (s^^p.a, s^^p.b + 1)\n  \n  import std/sequtils\n  import std/algorithm\n  {.push inline.}\n  type LazySegTree*[S,F;p:static[tuple]] = object\n    len*, size*, log*:int\n    d*:seq[S]\n    lz*:seq[F]\n\n  template calc_op*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.S):auto =\n    block:\n      let u = ST.p.op(a, b)\n      u\n  template calc_e*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n    block:\n      let u = ST.p.e()\n      u\n  template calc_mapping*[ST:LazySegTree](self:ST or typedesc[ST], a:ST.F, b:ST.S):auto =\n    block:\n      let u = ST.p.mapping(a, b)\n      u\n  template calc_composition*[ST:LazySegTree](self:ST or typedesc[ST], a, b:ST.F):auto =\n    block:\n      # こう書かないとバグる事象を検出\n      let u = ST.p.composition(a, b)\n      u\n  template calc_id*[ST:LazySegTree](self:ST or typedesc[ST]):auto =\n    block:\n      let u = ST.p.id()\n      u\n\n  proc update[ST:LazySegTree](self:var ST, k:int) =\n    self.d[k] = ST.calc_op(self.d[2 * k], self.d[2 * k + 1])\n  proc all_apply*[ST:LazySegTree](self:var ST, k:int, f:ST.F) =\n    self.d[k] = ST.calc_mapping(f, self.d[k])\n    if k < self.size:\n      self.lz[k] = ST.calc_composition(f, self.lz[k])\n  proc all_apply*[ST:LazySegTree](self:var ST, f:ST.F) =\n    self.all_apply(1, f)\n  proc push*[ST:LazySegTree](self: var ST, k:int) =\n    self.all_apply(2 * k, self.lz[k])\n    self.all_apply(2 * k + 1, self.lz[k])\n    self.lz[k] = ST.calc_id()\n\n  proc init[ST:LazySegTree](self:var ST, v:seq[ST.S]) =\n    let\n      n = v.len\n      log = ceil_pow2(n)\n      size = 1 shl log\n    (self.len, self.size, self.log) = (n, size, log)\n    if self.d.len < 2 * size:\n      self.d = newSeqWith(2 * size, ST.calc_e())\n    else:\n      self.d.fill(0, 2 * size - 1, ST.calc_e())\n    for i in 0..<n:\n      self.d[size + i] = v[i]\n    if self.lz.len < size:\n      self.lz = newSeqWith(size, ST.calc_id())\n    else:\n      self.lz.fill(0, size - 1, ST.calc_id())\n    for i in countdown(size - 1, 1): self.update(i)\n  proc init*[ST:LazySegTree](self: var ST, n:int) = self.init(newSeqWith(n, ST.calc_e()))\n  proc init*[ST:LazySegTree](self: typedesc[ST], v:seq[ST.S] or int):ST = result.init(v)\n\n  template LazySegTreeType[S, F](op0, e0, mapping0, composition0, id0:untyped):typedesc[LazySegTree] =\n    proc op1(a, b:S):S {.gensym inline.} = op0(a, b)\n    proc e1():S {.gensym inline.} = e0()\n    proc mapping1(f:F, s:S):S {.gensym inline.} = mapping0(f, s)\n    proc composition1(f1, f2:F):F {.gensym inline.} = composition0(f1, f2)\n    proc id1():F {.gensym inline.} = id0()\n    LazySegTree[S, F, (op:op1, e:e1, mapping:mapping1, composition:composition1, id:id1)]\n\n  template getType*(ST:typedesc[LazySegTree], S, F:typedesc, op, e, mapping, composition, id:untyped):typedesc[LazySegTree] =\n    LazySegTreeType[S, F](op, e, mapping, composition, id)\n\n  template initLazySegTree*[S, F](v:seq[S] or int, op, e, mapping, composition, id:untyped):auto =\n    LazySegTreeType[S, F](op, e, mapping, composition, id).init(v)\n\n  proc set*[ST:LazySegTree](self: var ST, p:IndexType, x:ST.S) =\n    var p = self^^p\n    assert p in 0..<self.len\n    p += self.size\n    for i in countdown(self.log, 1): self.push(p shr i)\n    self.d[p] = x\n    for i in 1..self.log: self.update(p shr i)\n\n  proc get*[ST:LazySegTree](self: var ST, p:IndexType):ST.S =\n    var p = self^^p\n    assert p in 0..<self.len\n    p += self.size\n    for i in countdown(self.log, 1): self.push(p shr i)\n    return self.d[p]\n\n  proc `[]=`*[ST:LazySegTree](self: var ST, p:IndexType, x:ST.S) = self.set(p, x)\n  proc `[]`*[ST:LazySegTree](self: var ST, p:IndexType):ST.S = self.get(p)\n\n  proc prod*[ST:LazySegTree](self:var ST, p:RangeType):ST.S =\n    var (l, r) = self.halfOpenEndpoints(p)\n    assert 0 <= l and l <= r and r <= self.len\n    if l == r: return ST.calc_e()\n\n    l += self.size\n    r += self.size\n\n    for i in countdown(self.log, 1):\n      if ((l shr i) shl i) != l: self.push(l shr i)\n      if ((r shr i) shl i) != r: self.push(r shr i)\n\n    var sml, smr = ST.calc_e()\n    while l < r:\n      if (l and 1) != 0: sml = ST.calc_op(sml, self.d[l]);l.inc\n      if (r and 1) != 0: r.dec;smr = ST.calc_op(self.d[r], smr)\n      l = l shr 1\n      r = r shr 1\n    return ST.calc_op(sml, smr)\n\n  proc `[]`*[ST:LazySegTree](self: var ST, p:RangeType):ST.S = self.prod(p)\n\n  proc all_prod*[ST:LazySegTree](self:ST):auto = self.d[1]\n\n  proc apply*[ST:LazySegTree](self: var ST, p:IndexType, f:ST.F) =\n    var p = self^^p\n    assert p in 0..<self.len\n    p += self.size\n    for i in countdown(self.log, 1): self.push(p shr i)\n    self.d[p] = ST.calc_mapping(f, self.d[p])\n    for i in 1..self.log: self.update(p shr i)\n  proc apply*[ST:LazySegTree](self: var ST, p:RangeType, f:ST.F) =\n    var (l, r) = self.halfOpenEndpoints(p)\n    assert 0 <= l and l <= r and r <= self.len\n    if l == r: return\n\n    l += self.size\n    r += self.size\n\n    for i in countdown(self.log, 1):\n      if ((l shr i) shl i) != l: self.push(l shr i)\n      if ((r shr i) shl i) != r: self.push((r - 1) shr i)\n\n    block:\n      var (l, r) = (l, r)\n      while l < r:\n        if (l and 1) != 0: self.all_apply(l, f);l.inc\n        if (r and 1) != 0: r.dec;self.all_apply(r, f)\n        l = l shr 1\n        r = r shr 1\n\n    for i in 1..self.log:\n      if ((l shr i) shl i) != l: self.update(l shr i)\n      if ((r shr i) shl i) != r: self.update((r - 1) shr i)\n\n#  template <bool (*g)(S)> int max_right(int l) {\n#    return max_right(l, [](S x) { return g(x); });\n#  }\n  proc max_right*[ST:LazySegTree](self:var ST, l:IndexType, g:proc(s:ST.S):bool):int =\n    var l = self^^l\n    assert l in 0..self.len\n    assert g(ST.calc_e())\n    if l == self.len: return self.len\n    l += self.size\n    for i in countdown(self.log, 1): self.push(l shr i)\n    var sm = ST.calc_e()\n    while true:\n      while l mod 2 == 0: l = l shr 1\n      if not g(ST.calc_op(sm, self.d[l])):\n        while l < self.size:\n          self.push(l)\n          l = (2 * l)\n          if g(ST.calc_op(sm, self.d[l])):\n            sm = ST.calc_op(sm, self.d[l])\n            l.inc\n        return l - self.size\n      sm = ST.calc_op(sm, self.d[l])\n      l.inc\n      if not((l and -l) != l): break\n    return self.len\n\n#  template <bool (*g)(S)> int min_left(int r) {\n#    return min_left(r, [](S x) { return g(x); });\n#  }\n  proc min_left*[ST:LazySegTree](self: var ST, r:IndexType, g:proc(s:ST.S):bool):int =\n    var r = self^^r\n    assert r in 0..self.len\n    assert(g(ST.calc_e()))\n    if r == 0: return 0\n    r += self.size\n    for i in countdown(self.log, 1): self.push((r - 1) shr i)\n    var sm = ST.calc_e()\n    while true:\n      r.dec\n      while r > 1 and r mod 2 == 1: r = r shr 1\n      if not g(ST.calc_op(self.d[r], sm)):\n        while r < self.size:\n          self.push(r)\n          r = (2 * r + 1)\n          if g(ST.calc_op(self.d[r], sm)):\n            sm = ST.calc_op(self.d[r], sm)\n            r.dec\n        return r + 1 - self.size\n      sm = ST.calc_op(self.d[r], sm)\n      if not ((r and -r) != r): break\n    return 0\n  {.pop.}\n"

import sequtils
type MergeTree = object
    ein : seq[int]
    eout : seq[int]
    et : seq[int]
    ret : seq[int]
    tree : UnWeightedUnDirectedGraph
    uf : UnionFind
    now : seq[int]
    N : int
    alr_query : int
    v:seq[(int,int)]
proc initMergeTree(N:int,v:seq[(int,int)]):MergeTree=
    var tree = initUnWeightedUnDirectedGraph(N+len(v)+1)
    var uf = initUnionFind(N)
    var now = newseqwith(N,0)
    for i in 0..<(N):
        now[i] = i
    for i in 0..<len(v):
        var (u,v) = v[i]
        var x = now[uf.root(u)]
        var y = now[uf.root(v)]
        
        tree.add_edge(x,N+i)
        if x != y:
            tree.add_edge(y,N+i)
        uf.unite(u,v)
        now[uf.root(u)] = N+i
    var alr = newSeqWith(N,false)
    for i in 0..<N:
        if not alr[uf.root(i)]:
            alr[uf.root(i)] = true
            tree.add_edge(N+len(v),now[uf.root(i)])
    var ein = newseqwith(N+len(v)+1,-1)
    var eout = newseqwith(N+len(v)+1,-1)
    var et : seq[int]
    proc dfs(x,p:int)=
        ein[x] = len(et)
        if x < N:
            et.add(x)
        for y in tree[x]:
            if y != p:
                dfs(y,x)
        eout[x] = len(et)
    dfs(N+len(v),-1)
    result.tree = move(tree)
    result.ein = move(ein)
    result.eout = move(eout)
    result.et = move(et)
    result.ret = newseqwith(N,-1)
    result.uf = initUnionFind(N)
    result.now = newseqwith(N,0)
    result.v = v
    result.N = N
    for i in 0..<(N):
        result.now[i] = i
    for i in 0..<N:
        result.ret[result.et[i]] = i

proc unite(self:var MergeTree,u,v:int)=
    assert (self.v[self.alr_query][0] == u or self.v[self.alr_query][0] == v) and (self.v[self.alr_query][1] == v or self.v[self.alr_query][1] == u)
    self.uf.unite(u,v)
    self.now[self.uf.root(u)] = self.N+self.alr_query
    self.alr_query += 1

proc get_id(self:MergeTree,x:int):int=
    return self.now[self.uf.root(x)]

proc get_range(self:MergeTree,x:int):HSlice[int,int]=
    return (self.ein[self.now[self.uf.root(x)]]..<self.eout[self.now[self.uf.root(x)]])

proc make_seq[T](self:MergeTree,v:seq[T]):seq[T]=
    assert len(v) == self.N
    result = newseq[T](len(v))
    for i in 0..<self.N:
        result[self.ret[i]] = v[i]

proc restore_seq[T](self:MergeTree,v:seq[T]):seq[T]=
    assert len(v) == self.N
    result = newseq[T](len(v))
    for i in 0..<self.N:
        result[self.et[i]] = v[i]

proc index(self:MergeTree,x:int):int=
    self.ret[x]

proc initRangeAddRangeMaxSegtree[T](v:seq[T]):auto=
    type S = T
    type F = T
    proc op(a,b:S):S=max(a,b)
    proc e():S=S(-8e18)
    proc mapping(f:F,x:S):S=f+x
    proc composition(f,g:F):F=f+g
    proc id():F=0
    return LazySegTree.getType(S, F, op, e, mapping, composition, id).init(v)


var N,Q = ii()
var querys : seq[(int,int,int)]
var v : seq[(int,int)]
for i in range(Q):
    var T,A,B = ii()
    querys.add((T,A,B))
    if T == 1:
        v.add((A-1,B-1))

var MT = initMergeTree(N,v)
var st = initRangeAddRangeMaxSegtree(newseqwith(N,0))
for i in range(Q):
    var (T,A,B) = querys[i]
    if T == 1:
        MT.unite(A-1,B-1)
    elif T == 2: 
        st.apply(MT.get_range(A-1),B)
    else:
        stdout.writeLine st[MT.index(A-1)]
0