結果
問題 | No.2907 Business Revealing Dora Tiles |
ユーザー | 👑 amentorimaru |
提出日時 | 2024-09-16 14:15:57 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 179 ms / 3,000 ms |
コード長 | 6,817 bytes |
コンパイル時間 | 13,283 ms |
コンパイル使用メモリ | 242,808 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-23 13:00:14 |
合計ジャッジ時間 | 23,600 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
6,812 KB |
testcase_01 | AC | 4 ms
6,812 KB |
testcase_02 | AC | 3 ms
6,816 KB |
testcase_03 | AC | 3 ms
6,940 KB |
testcase_04 | AC | 4 ms
6,940 KB |
testcase_05 | AC | 3 ms
6,940 KB |
testcase_06 | AC | 4 ms
6,940 KB |
testcase_07 | AC | 5 ms
6,940 KB |
testcase_08 | AC | 4 ms
6,944 KB |
testcase_09 | AC | 3 ms
6,940 KB |
testcase_10 | AC | 3 ms
6,940 KB |
testcase_11 | AC | 18 ms
6,940 KB |
testcase_12 | AC | 4 ms
6,944 KB |
testcase_13 | AC | 4 ms
6,940 KB |
testcase_14 | AC | 4 ms
6,940 KB |
testcase_15 | AC | 4 ms
6,940 KB |
testcase_16 | AC | 3 ms
6,940 KB |
testcase_17 | AC | 3 ms
6,944 KB |
testcase_18 | AC | 6 ms
6,940 KB |
testcase_19 | AC | 3 ms
6,940 KB |
testcase_20 | AC | 3 ms
6,944 KB |
testcase_21 | AC | 32 ms
6,940 KB |
testcase_22 | AC | 6 ms
6,944 KB |
testcase_23 | AC | 53 ms
6,944 KB |
testcase_24 | AC | 84 ms
6,940 KB |
testcase_25 | AC | 83 ms
6,944 KB |
testcase_26 | AC | 83 ms
6,940 KB |
testcase_27 | AC | 83 ms
6,940 KB |
testcase_28 | AC | 84 ms
6,940 KB |
testcase_29 | AC | 84 ms
6,944 KB |
testcase_30 | AC | 83 ms
6,944 KB |
testcase_31 | AC | 84 ms
6,944 KB |
testcase_32 | AC | 84 ms
6,944 KB |
testcase_33 | AC | 84 ms
6,940 KB |
testcase_34 | AC | 85 ms
6,944 KB |
testcase_35 | AC | 84 ms
6,940 KB |
testcase_36 | AC | 84 ms
6,944 KB |
testcase_37 | AC | 83 ms
6,944 KB |
testcase_38 | AC | 83 ms
6,940 KB |
testcase_39 | AC | 84 ms
6,944 KB |
testcase_40 | AC | 83 ms
6,940 KB |
testcase_41 | AC | 87 ms
6,944 KB |
testcase_42 | AC | 85 ms
6,944 KB |
testcase_43 | AC | 84 ms
6,940 KB |
testcase_44 | AC | 171 ms
6,944 KB |
testcase_45 | AC | 179 ms
6,944 KB |
testcase_46 | AC | 127 ms
6,940 KB |
testcase_47 | AC | 71 ms
6,940 KB |
testcase_48 | AC | 77 ms
6,944 KB |
testcase_49 | AC | 70 ms
6,940 KB |
testcase_50 | AC | 144 ms
6,940 KB |
testcase_51 | AC | 17 ms
6,940 KB |
testcase_52 | AC | 84 ms
6,944 KB |
testcase_53 | AC | 108 ms
6,940 KB |
testcase_54 | AC | 53 ms
6,944 KB |
testcase_55 | AC | 106 ms
6,940 KB |
testcase_56 | AC | 106 ms
6,944 KB |
testcase_57 | AC | 107 ms
6,940 KB |
testcase_58 | AC | 103 ms
6,940 KB |
testcase_59 | AC | 98 ms
6,940 KB |
ソースコード
#define ATCODER #define _USE_MATH_DEFINES #include <bit> #include<stdio.h> #include<iostream> #include<fstream> #include<algorithm> #include<vector> #include<string> #include <cassert> #include <numeric> #include <unordered_map> #include <unordered_set> #include <queue> #include <math.h> #include <climits> #include <set> #include <map> #include <list> #include <random> #include <iterator> #include <bitset> #include <chrono> #include <type_traits> using namespace std; using ll = long long; using ld = long double; using pll = pair<ll, ll>; using pdd = pair<ld, ld>; //template<claLR T> using pq = priority_queue<T, vector<T>, greater<T>>; #define FOR(i, a, b) for(ll i=(a); i<(b);i++) #define REP(i, n) for(ll i=0; i<(n);i++) #define ROF(i, a, b) for(ll i=(b-1); i>=(a);i--) #define PER(i, n) for(ll i=n-1; i>=0;i--) #define REPREP(i,j,a,b) for(ll i=0;i<a;i++)for(ll j=0;j<b;j++) #define VV(type) vector< vector<type> > #define VV2(type,n,m,val) vector< vector<type> > val;val.resize(n);for(ll i;i<n;i++)val[i].resize(m) #define vec(type) vector<type> #define VEC(type,n,val) vector<type> val;val.resize(n) #define VL vector<ll> #define VVL vector< vector<ll> > #define VP vector< pair<ll,ll> > #define SZ size() #define all(i) begin(i),end(i) #define SORT(i) sort(all(i)) #define BITI(i) (1<<i) #define BITSET(x,i) x | (ll(1)<<i) #define BITCUT(x,i) x & ~(ll(1)<<i) #define EXISTBIT(x,i) (((x>>i) & 1) != 0) #define ALLBIT(n) (ll(1)<<n-1) #define CHMAX(n,v) n=n<v?v:n #define CHMIN(n,v) n=n>v?v:n #define MP(a,b) make_pair(a,b) #define DET2(x1,y1,x2,y2) (x1)*(y2)-(x2)*(y1) #define DET3(x1,y1,z1,x2,y2,z2,x3,y3,z3) (x1)*(y2)*(z3)+(x2)*(y3)*(z1)+(x3)*(y1)*(z2)-(z1)*(y2)*(x3)-(z2)*(y3)*(x1)-(z3)*(y1)*(x2) #define INC(a) for(auto& v:a)v++; #define DEC(a) for(auto& v:a)v--; #define SQU(x) (x)*(x) #define L0 ll(0) #ifdef ATCODER #include <atcoder/all> using namespace atcoder; using mint = modint1000000007; using mint2 = modint998244353; #endif template<typename T = ll> vector<T> read(size_t n) { vector<T> ts(n); for (size_t i = 0; i < n; i++) cin >> ts[i]; return ts; } template<typename TV, const ll N> void read_tuple_impl(TV&) {} template<typename TV, const ll N, typename Head, typename... Tail> void read_tuple_impl(TV& ts) { get<N>(ts).emplace_back(*(istream_iterator<Head>(cin))); read_tuple_impl<TV, N + 1, Tail...>(ts); } template<typename... Ts> decltype(auto) read_tuple(size_t n) { tuple<vector<Ts>...> ts; for (size_t i = 0; i < n; i++) read_tuple_impl<decltype(ts), 0, Ts...>(ts); return ts; } using val = ll; //using func = pair<ll, ll>; val op(val a, val b) { return min(a, b); } val e() { return 1e18; } using val2 = mint2; //using func = pair<ll, ll>; val2 op2(val2 a, val2 b) { return a * b; } val2 e2() { return 1; } // //val mp(func f, val a) //{ // if (f.first < 0) // return a; // return f; //} //func comp(func f, func g) { // if (g.first < 0) // return f; // return g; //} // //func id() { // return MP(-1, -1); //} ll di[4] = { 1,0,-1,0 }; ll dj[4] = { 0,1,0,-1 }; ll si[4] = { 0,3,3,0 }; ll sj[4] = { 0,0,3,3 }; //ll di[4] = { -1,-1,1,1 }; //ll dj[4] = { -1,1,-1,1 }; ll di8[8] = { 0,-1,-1,-1,0,1,1,1 }; ll dj8[8] = { -1,-1,0,1,1,1,0,-1 }; using u64 = unsigned long long; class NaiveNimber{ void precalc() { pre_prod.assign(256, vector<u64>(256)); pre_inv.assign(256,0); for (int a = 1; a < 256; a++) { for (int b = a; b < 256; b++) { u64 r = product_impl(a,b,3); if(r==1){ pre_inv[a]=b; pre_inv[b]=a; } } } } u64 product_impl(u64 a, u64 b, int d = 6) noexcept { if (min(a,b) <= 1) return a * b; if (a < 256 && b < 256 && pre_prod[a][b]) { return pre_prod[a][b]; } d--; u64 db = 1ULL << d; u64 mx = 1ULL << db; if(a < mx && b < mx){ return product_impl(a, b, d); } u64 au = a >> db; u64 al = a & (mx-1); u64 bu = b >> db; u64 bl = b & (mx-1); u64 aubu = product_impl(au,bu,d); u64 albu = product_impl(al,bu,d); u64 aubl = product_impl(au,bl,d); u64 albl = product_impl(al,bl,d); u64 buf = ((aubu^aubl^albu) << db)^(product_impl(aubu,mx/2,d))^(albl); if(a<256 && b<256)pre_prod[a][b]=pre_prod[b][a]=buf; return buf; } u64 inv_impl(u64 a, int d = 6) { if (a < 256) { return pre_inv[a]; } u64 p = 1 << (d - 1); u64 a_h = a >> p; u64 a_l = a - (a_h << p); u64 half_inv = inv_impl(product_impl(a_h ^ a_l, a_l, d) ^ product_impl(product_impl(a_h, a_h, d - 1), 1ULL << (p - 1)), d - 1); return (product_impl(half_inv, a_h, d) << p) ^ product_impl(half_inv, a_h ^ a_l, d); return (product_impl(half_inv, a_h, d) << p) ^ product_impl(half_inv, a_h ^ a_l, d); } vector<vector<u64>> pre_prod; vector<u64> pre_inv; public: NaiveNimber() { precalc();} u64 product(u64 a, u64 b) noexcept { return product_impl(a, b); } u64 inv(u64 a) noexcept { return inv_impl(a); } }; void solve() { NaiveNimber nm; ll n, t; cin >> n >> t; vector h(t, vector<u64>()); REP(i, t) { h[i] = read<u64>(n); DEC(h[i]); } vector<bool> use(t); REP(j, n) { u64 inv = 0; ll id = -1; REP(i, t) { if (h[i][j] == 0 || use[i]) continue; inv = nm.inv(h[i][j]); use[i]=true; id=i; break; } if (id == -1) { continue; } REP(i, t) { if (i == id || h[i][j] == 0) continue; u64 mul = nm.product(inv, h[i][j]); REP(jj, n) { h[i][jj] ^= nm.product(mul, h[id][jj]); } } } vector abase(n,vector<u64>(n)); REP(i,t){ REP(j,n){ if(h[i][j]){ abase[j]=h[i]; break; } } } reverse(all(abase)); for(auto&r:abase)reverse(all(r)); mint2 ans = 0; mint2 fr = mint2(2).pow(64); auto dfs=[&](auto self, vector<vector<u64>>& a, mint2 add, ll pc, ll id) -> void { if(id < 0){ ans += pc%2 ? -add : add; return; } auto a0=a; mint2 add0 = a0.back().back() ? add : add * fr; a0.pop_back(); for(auto& r:a0)r.pop_back(); self(self,a0,add0,pc,id-1); auto a1=a; for(auto& r:a1)r.pop_back(); PER(j0,a1.back().size()){ if(a1.back()[j0]){ u64 ainv=nm.inv(a1.back()[j0]); for(auto&v:a1.back())v=nm.product(v,ainv); REP(i,a1.size()){ REP(j,a1[i].size()){ if(i==j0){ if(a1[j0][j0]!=a1.back()[j0]) a1[i][j]^=a1.back()[j]; } else a1[i][j]^=nm.product(a1.back()[j],a1[i][j0]); } } break; } } a1.pop_back(); self(self,a1,add,pc+1,id-1); return; }; dfs(dfs,abase,1,0,n-1); cout<<ans.val(); } int main() { ll t = 1; //cin >> t; while (t--) { solve(); } return 0; }