結果
| 問題 |
No.2362 Inversion Number of Mod of Linear
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-09-17 23:33:41 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 13,198 bytes |
| コンパイル時間 | 3,006 ms |
| コンパイル使用メモリ | 244,928 KB |
| 最終ジャッジ日時 | 2025-02-24 09:11:05 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge6 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
In file included from /usr/include/c++/13/string:43,
from /usr/include/c++/13/bitset:52,
from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:52,
from main.cpp:13:
/usr/include/c++/13/bits/allocator.h: In destructor ‘std::_Bvector_base<std::allocator<bool> >::_Bvector_impl::~_Bvector_impl()’:
/usr/include/c++/13/bits/allocator.h:184:7: error: inlining failed in call to ‘always_inline’ ‘std::allocator< <template-parameter-1-1> >::~allocator() noexcept [with _Tp = long unsigned int]’: target specific option mismatch
184 | ~allocator() _GLIBCXX_NOTHROW { }
| ^
In file included from /usr/include/c++/13/vector:67,
from /usr/include/c++/13/functional:64,
from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:53:
/usr/include/c++/13/bits/stl_bvector.h:590:14: note: called from here
590 | struct _Bvector_impl
| ^~~~~~~~~~~~~
ソースコード
// QCFium 法
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = static_modint<1234567891>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
//【直線に沿った格子路上の積】O(log(n+m+a+b))
/*
* (0, 0) から (n, (an+b)//m) までの直線 y=(ax+b)/m 以下の上優先の格子路について,
* 右に進むときは f,上に進むときは g を順に掛け合わせたモノイド (S, op, e) の元を返す.
*
* 制約:n≧0, m≧1, a≧0, b≧0
*/
template <class T, class S, S(*op)(S, S), S(*e)()>
S multiple_along_line(T n, T m, T a, T b, S f, S g) {
// 参考 : https://github.com/hos-lyric/libra/blob/master/number/gojo.cpp
// verify : https://judge.yosupo.jp/problem/sum_of_floor_of_linear
Assert(n >= 0); Assert(m >= 1); Assert(a >= 0); Assert(b >= 0);
// x^n を返す
auto pow = [](const S& x, T n) {
S res(e()), pow2 = x;
while (n > 0) {
if (n & 1) res = op(res, pow2);
pow2 = op(pow2, pow2);
n /= 2;
}
return res;
};
S resL = e(), resR = e(); bool rev = false;
while (true) {
// 傾きを 1 未満,切片を 1 未満にする.
if (rev) {
resR = op(pow(g, b / m), resR);
f = op(pow(g, a / m), f);
}
else {
resL = op(resL, pow(g, b / m));
f = op(f, pow(g, a / m));
}
a %= m;
b %= m;
if (a == 0 || n == 0) break;
// 左側の中途半端に余っている部分を切り取る.
T l = (m - b + a - 1) / a;
if (l > n) {
if (rev) {
resR = op(pow(f, n), resR);
}
else {
resL = op(resL, pow(f, n));
}
n = 0;
break;
}
if (rev) {
resR = op(op(g, pow(f, l)), resR);
}
else {
resL = op(resL, op(pow(f, l), g));
}
b = a * l + b - m;
n -= l;
if (n == 0) break;
// 軸を取り直して傾きを 1 より大きくする.
T nn = (a * n + b) / m;
T nm = a;
T na = m;
T nb = a * n + b - m * nn;
n = nn; m = nm; a = na; b = nb; swap(f, g);
rev = !rev;
}
return op(resL, op(pow(f, n), resR));
}
//【正方行列(固定サイズ)】
/*
* Fixed_matrix<T, n>() : O(n^2)
* T の要素を成分にもつ n×n 零行列で初期化する.
*
* Fixed_matrix<T, n>(bool identity = true) : O(n^2)
* T の要素を成分にもつ n×n 単位行列で初期化する.
*
* Fixed_matrix<T, n>(vvT a) : O(n^2)
* 二次元配列 a[0..n)[0..n) の要素で初期化する.
*
* A + B : O(n^2)
* n×n 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n^2)
* n×n 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n^2)
* n×n 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n^2)
* n×n 行列 A と n 次元列ベクトル array<T, n> x の積を返す.
*
* x * A : O(n^2)
* n 次元行ベクトル array<T, n> x と n×n 行列 A の積を返す.
*
* A * B : O(n^3)
* n×n 行列 A と n×n 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
* 自身を d 乗した行列を返す.
*/
template <class T, int n>
struct Fixed_matrix {
array<array<T, n>, n> v; // 行列の成分
// n×n 零行列で初期化する.identity = true なら n×n 単位行列で初期化する.
Fixed_matrix(bool identity = false) {
rep(i, n) v[i].fill(T(0));
if (identity) rep(i, n) v[i][i] = T(1);
}
// 二次元配列 a[0..n)[0..n) の要素で初期化する.
Fixed_matrix(const vector<vector<T>>& a) {
// verify : https://yukicoder.me/problems/no/1000
Assert(sz(a) == n && sz(a[0]) == n);
rep(i, n) rep(j, n) v[i][j] = a[i][j];
}
// 代入
Fixed_matrix(const Fixed_matrix&) = default;
Fixed_matrix& operator=(const Fixed_matrix&) = default;
// アクセス
inline array<T, n> const& operator[](int i) const { return v[i]; }
inline array<T, n>& operator[](int i) { return v[i]; }
// 入力
friend istream& operator>>(istream& is, Fixed_matrix& a) {
rep(i, n) rep(j, n) is >> a[i][j];
return is;
}
// 比較
bool operator==(const Fixed_matrix& b) const { return v == b.v; }
bool operator!=(const Fixed_matrix& b) const { return !(*this == b); }
// 加算,減算,スカラー倍
Fixed_matrix& operator+=(const Fixed_matrix& b) {
rep(i, n) rep(j, n) v[i][j] += b[i][j];
return *this;
}
Fixed_matrix& operator-=(const Fixed_matrix& b) {
rep(i, n) rep(j, n) v[i][j] -= b[i][j];
return *this;
}
Fixed_matrix& operator*=(const T& c) {
rep(i, n) rep(j, n) v[i][j] *= c;
return *this;
}
Fixed_matrix operator+(const Fixed_matrix& b) const { return Fixed_matrix(*this) += b; }
Fixed_matrix operator-(const Fixed_matrix& b) const { return Fixed_matrix(*this) -= b; }
Fixed_matrix operator*(const T& c) const { return Fixed_matrix(*this) *= c; }
friend Fixed_matrix operator*(const T& c, const Fixed_matrix& a) { return a * c; }
Fixed_matrix operator-() const { return Fixed_matrix(*this) *= T(-1); }
// 行列ベクトル積 : O(n^2)
array<T, n> operator*(const array<T, n>& x) const {
array<T, n> y{ 0 };
rep(i, n) rep(j, n) y[i] += v[i][j] * x[j];
return y;
}
// ベクトル行列積 : O(n^2)
friend array<T, n> operator*(const array<T, n>& x, const Fixed_matrix& a) {
array<T, n> y{ 0 };
rep(i, n) rep(j, n) y[j] += x[i] * a[i][j];
return y;
}
// 積:O(n^3)
Fixed_matrix operator*(const Fixed_matrix& b) const {
// verify : https://yukicoder.me/problems/no/1000
Fixed_matrix res;
rep(i, n) rep(k, n) rep(j, n) res[i][j] += v[i][k] * b[k][j];
return res;
}
Fixed_matrix& operator*=(const Fixed_matrix& b) { *this = *this * b; return *this; }
// 累乗:O(n^3 log d)
Fixed_matrix pow(ll d) const {
// verify : https://yukicoder.me/problems/no/2810
Fixed_matrix res(true), pow2(*this);
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Fixed_matrix& a) {
rep(i, n) {
os << "[";
rep(j, n) os << a[i][j] << " ]"[j == n - 1];
if (i < n - 1) os << "\n";
}
return os;
}
#endif
};
//【逆行列総積 モノイド】
/* verify: https://atcoder.jp/contests/arc025/tasks/arc025_4 */
constexpr int N020 = 6;
using S020 = Fixed_matrix<ull, N020>;
S020 op020(S020 a, S020 b) { return b * a; }
S020 e020() { return S020(1); }
#define MatrixInvMul_monoid S020, op020, e020
void TLE() {
ll n, m, a, b;
cin >> n >> m >> a >> b;
S020 f({
{1, 0, 0, 1, 0, 0}, // x
{0, 1, 0, 0, 0, 0}, // y
{0, 1, 1, 0, 1, 0}, // v1
{0, 0, 0, 1, 0, 0}, // 1
{0, 1, 0, 0, 1, 0}, // x y
{0, 1, 0, 0, 0, 1} // v
});
S020 g({
{1, 0, 0, 0, 0, 0}, // x
{0, 1, 0, 1, 0, 0}, // y
{1, 0, 1, 0, 0, 0}, // v1
{0, 0, 0, 1, 0, 0}, // 1
{1, 0, 0, 0, 1, 0}, // x y
{0, 0, 0, 1, 0, 1} // v
});
__int128 res = 0;
auto h = multiple_along_line<ll, MatrixInvMul_monoid>(n - 1, m, a, b, f, g);
dump(h);
res += 2 * h[2][3];
res += (1 - n) * h[5][3];
h = multiple_along_line<ll, MatrixInvMul_monoid>(n - 1, m, a, 0, f, g);
dump(h);
res += h[2][3];
res += -n * h[5][3];
cout << (ll)res << "\n";
}
void Main() {
ll n, m, a, b;
cin >> n >> m >> a >> b;
S020 f({
{1, 0, 0, 1, 0, 0}, // x
{0, 1, 0, 0, 0, 0}, // y
{0, 1, 1, 0, 1, 0}, // v1
{0, 0, 0, 1, 0, 0}, // 1
{0, 1, 0, 0, 1, 0}, // x y
{0, 1, 0, 0, 0, 1} // v
});
S020 g({
{1, 0, 0, 0, 0, 0}, // x
{0, 1, 0, 1, 0, 0}, // y
{1, 0, 1, 0, 0, 0}, // v1
{0, 0, 0, 1, 0, 0}, // 1
{1, 0, 0, 0, 1, 0}, // x y
{0, 0, 0, 1, 0, 1} // v
});
ull res = 0;
auto h = multiple_along_line<ll, MatrixInvMul_monoid>(n - 1, m, a, b, f, g);
dump(h);
res += 2 * h[2][3];
res += (1 - n) * h[5][3];
h = multiple_along_line<ll, MatrixInvMul_monoid>(n - 1, m, a, 0, f, g);
dump(h);
res += h[2][3];
res += -n * h[5][3];
cout << res << "\n";
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int t = 1;
cin >> t; // マルチテストケースの場合
while (t--) {
dump("------------------------------");
Main();
}
}