結果

問題 No.2883 K-powered Sum of Fibonacci
ユーザー shobonvip
提出日時 2024-09-20 02:31:04
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 4 ms / 3,000 ms
コード長 2,195 bytes
コンパイル時間 3,693 ms
コンパイル使用メモリ 236,564 KB
最終ジャッジ日時 2025-02-24 09:41:11
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 40
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:6:12: warning: use of ‘auto’ in parameter declaration only available with ‘-std=c++20’ or ‘-fconcepts’
    6 | bool chmin(auto &a, auto b){ return a > b ? a = b, 1 : 0; }
      |            ^~~~
main.cpp:6:21: warning: use of ‘auto’ in parameter declaration only available with ‘-std=c++20’ or ‘-fconcepts’
    6 | bool chmin(auto &a, auto b){ return a > b ? a = b, 1 : 0; }
      |                     ^~~~
main.cpp:7:12: warning: use of ‘auto’ in parameter declaration only available with ‘-std=c++20’ or ‘-fconcepts’
    7 | bool chmax(auto &a, auto b){ return a < b ? a = b, 1 : 0; }
      |            ^~~~
main.cpp:7:21: warning: use of ‘auto’ in parameter declaration only available with ‘-std=c++20’ or ‘-fconcepts’
    7 | bool chmax(auto &a, auto b){ return a < b ? a = b, 1 : 0; }
      |                     ^~~~

ソースコード

diff #

#include<bits/stdc++.h>
#define rep(i,s,n) for (int i = (int)(s); i < (int)(n); i++)
#define all(v) begin(v),end(v)
using namespace std;
using ll = long long;
bool chmin(auto &a, auto b){ return a > b ? a = b, 1 : 0; }
bool chmax(auto &a, auto b){ return a < b ? a = b, 1 : 0; }

#include<atcoder/modint>
#include<atcoder/convolution>
using namespace atcoder;
typedef atcoder::modint998244353 mint;

vector<mint> BerlekampMassey(const vector<mint> &s) {
	const int N = (int)s.size();
	vector<mint> b, c;
	b.reserve(N + 1);
	c.reserve(N + 1);
	b.push_back(mint(1));
	c.push_back(mint(1));
	mint y = mint(1);
	for (int ed = 1; ed <= N; ed++) {
		int l = int(c.size()), m = int(b.size());
		mint x = 0;
		for (int i = 0; i < l; i++) x += c[i] * s[ed - l + i];
		b.emplace_back(mint(0));
		m++;
		if (x == mint(0)) continue;
		mint freq = x / y;
		if (l < m) {
			auto tmp = c;
			c.insert(begin(c), m - l, mint(0));
			for (int i = 0; i < m; i++) c[m - 1 - i] -= freq * b[m - 1 - i];
			b = tmp;
			y = x;
		} else {
			for (int i = 0; i < m; i++) c[l - 1 - i] -= freq * b[m - 1 - i];
		}
	}
	reverse(begin(c), end(c));
	return c;
}

mint bostan_mori(ll n, vector<mint> p, vector<mint> q){
	assert(p.size() < q.size());
	while (n > 0){
		vector<mint> qi((int)q.size());
		for (int i=0; i<(int)q.size(); i++){
			if (i%2==0) qi[i] = q[i];
			else qi[i] = -q[i];
		}
		vector<mint> qq = convolution<mint>(q, qi);
		q.resize(((int)qq.size()+1)/2);
		for (int i=0; i<((int)qq.size()+1)/2; i++){
			q[i] = qq[2*i];
		}
		vector<mint> pp = convolution<mint>(p, qi);
		if (n%2==0){
			p.resize(((int)pp.size()+1)/2);
			for (int i=0; i<((int)pp.size()+1)/2; i++){
				p[i] = pp[2*i];
			}
		}else{
			p.resize((int)pp.size()/2);
			for (int i=0; i<(int)pp.size()/2; i++){
				p[i] = pp[2*i+1];
			}
		}
		n/=2;
	}
	return p[0]*q[0].inv();
}



int main(){
    cin.tie(0)->sync_with_stdio(0);

	ll n, k; cin >> n >> k;
	vector<mint> f(300);
	f[1] = 1;
	rep(i,2,300){
		f[i] = f[i-1] + f[i-2];
	}
	rep(i,0,300){
		f[i] = f[i].pow(k);
	}
	rep(i,1,300){
		f[i] += f[i-1];
	}
	vector<mint> g = BerlekampMassey(f);
	f = convolution(f,g);
	f.resize((int)g.size()-1);
	cout << bostan_mori(n,f,g).val() << '\n';

}
0