結果
問題 | No.2895 Zero XOR Subset |
ユーザー | ecottea |
提出日時 | 2024-09-20 21:32:07 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 11,378 bytes |
コンパイル時間 | 6,041 ms |
コンパイル使用メモリ | 307,980 KB |
実行使用メモリ | 817,348 KB |
最終ジャッジ日時 | 2024-09-20 21:32:40 |
合計ジャッジ時間 | 9,089 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
6,272 KB |
testcase_01 | AC | 4 ms
6,400 KB |
testcase_02 | MLE | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
ソースコード
// QCFium 法 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = static_modint<1234567891>; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【ビット行列】 /* * Bit_matrix<M>(int n, int m) : O(n M / 64) * n×m 零行列で初期化する. * 制約:m ≦ M * * Bit_matrix<M>(int n) : O(n M / 64) * n×n 単位行列で初期化する. * * Bit_matrix<M>(vector<bitset<M>> a, int m) : O(n M / 64) * 二次元配列 a[0..n)[0..m) の要素で初期化する. * * Bit_matrix<M>(vi[vl] a, int m) : O(n M / 64) * 数 a[i] の第 j ビットを v[i][j] とする行列で初期化する. * * push_back(bitset<M> col) : O(M / 64) * 最下行に col を追加する. * * A * x : O(n M / 64) * n×m 行列 A と m 次元列ベクトル x の積を返す. * * A * B : O(n m l) * n×m 行列 A と m×l 行列 B の積を返す. * * Bit_matrix<M> pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. * * Bit_matrix<M> transpose() : O(n m) * 自身を転置した行列を返す. * 制約:n ≦ M */ template <int M> struct Bit_matrix { int n, m; // 行列のサイズ(n 行 m 列) vector<bitset<M>> v; // 行列の成分 // n×m 零行列で初期化する. Bit_matrix(int n, int m) : n(n), m(m), v(n) {} // n×n 単位行列で初期化する. Bit_matrix(int n) : n(n), m(n), v(n) { rep(i, n) v[i][i] = 1; } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Bit_matrix(const vector<bitset<M>>& a, int m) : n(sz(a)), m(m), v(a) {} // 数 a[i] の第 j ビットを v[i][j] とする行列で初期化する. Bit_matrix(const vi& a, int m) : n(sz(a)), m(m), v(n) { rep(i, n) v[i] = bitset<M>(a[i]); } Bit_matrix(const vl& a, int m) : n(sz(a)), m(m), v(n) { rep(i, n) v[i] = bitset<M>(a[i]); } Bit_matrix() : m(0), n(0) {} // 代入 Bit_matrix(const Bit_matrix& old) = default; Bit_matrix& operator=(const Bit_matrix& other) = default; // 比較 bool operator==(const Bit_matrix& g) const { return n == g.n && m == g.m && v == g.v; } bool operator!=(const Bit_matrix& g) const { return !(*this == g); } // アクセス inline bitset<M> const& operator[](int i) const { return v[i]; } inline bitset<M>& operator[](int i) { return v[i]; } // 行の追加 void push_back(const bitset<M>& col) { v.push_back(col); n++; } // 行列ベクトル積 bitset<M> operator*(const bitset<M>& x) const { bitset<M> y; rep(i, n) y[i] = (v[i] & x).count() % 2; return y; } // 積 Bit_matrix operator*(const Bit_matrix& b) const { Bit_matrix res(n, b.m); rep(i, res.n) rep(j, res.m) rep(k, m) res[i][j] = res[i][j] ^ (v[i][k] & b[k][j]); return res; } Bit_matrix& operator*=(const Bit_matrix& b) { *this = *this * b; return *this; } // 累乗 Bit_matrix pow(ll d) const { // verify : https://atcoder.jp/contests/jag2013summer-day4/tasks/icpc2013summer_day4_f Bit_matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d /= 2; } return res; } // 転置(A^T) Bit_matrix transpose() const { Bit_matrix res(m, n); rep(i, m) rep(j, n) res[i][j] = v[j][i]; return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Bit_matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << (j < a.m - 1 ? " " : "]"); if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【線形方程式】O(n m min(n, m) / 64) /* * 与えられた n×m 行列 A と n 次元ベクトル b に対し, * 線形方程式 A x = b の特殊解 x0(m 次元ベクトル)を格納する(なければ false を返す) * また同次形 A x = 0 の解空間の基底(m 次元ベクトル)のリストを xs に格納する. */ template <int M> bool gauss_jordan_elimination(const Bit_matrix<M>& A, const vb& b, bitset<M>* x0 = nullptr, vector<bitset<M>>* xs = nullptr) { // verify : https://atcoder.jp/contests/abc366/tasks/abc366_g int n = A.n, m = A.m; // v : 拡大係数行列 (A | b) vector<bitset<M + 1>> v(n); rep(i, n) rep(j, m) v[i][j] = A[i][j]; rep(i, n) v[i][m] = b[i]; // pivots[i] : 第 i 行のピボットが第何列にあるか vi pivots; // 注目位置を v[i][j] とする. int i = 0, j = 0; while (i < n && j <= m) { // 注目列の下方の行から 1 を見つける. int i2 = i; while (i2 < n && !v[i2][j]) i2++; // 見つからなかったら注目位置を右に移す. if (i2 == n) { j++; continue; } // 見つかったら第 i 行とその行を入れ替える. if (i != i2) swap(v[i], v[i2]); // v[i][j] をピボットに選択する. pivots.push_back(j); // 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を XOR する. rep(i2, n) if (v[i2][j] && i2 != i) v[i2] ^= v[i]; // 注目位置を右下に移す. i++; j++; } // 最後に見つかったピボットの位置が第 m 列ならば解なし. if (!pivots.empty() && pivots.back() == m) return false; // A x = b の特殊解 x0 の構成(任意定数は全て 0 にする) if (x0 != nullptr) { x0->reset(); int rnk = sz(pivots); rep(i, rnk) (*x0)[pivots[i]] = v[i][m]; // 同次形 A x = 0 の一般解 {x} の基底の構成(任意定数を 1-hot にする) if (xs != nullptr) { xs->clear(); int i = 0; rep(j, m) { if (i < rnk && j == pivots[i]) { i++; continue; } bitset<M> x; x[j] = 1; rep(i2, i) x[pivots[i2]] = v[i2][j]; xs->emplace_back(move(x)); } } } return true; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; cin >> n; vl a(n); cin >> a; constexpr int M = 200010; // constexpr int M = 10; Bit_matrix<M> mat(60, n); rep(i, n) rep(j, 60) mat[j][i] = getb(a[i], j); dump(mat); vb vec(60); bitset<M> x0; vector<bitset<M>> xs; auto b = gauss_jordan_elimination<M>(mat, vec, &x0, &xs); dump(x0); dumpel(xs); if (sz(xs) == 0) EXIT(-1); vi res; rep(i, n) if (xs[0][i]) res.push_back(i + 1); cout << sz(res) << endl; rep(i, sz(res)) cout << res[i] << " \n"[i == sz(res) - 1]; }