結果
問題 | No.2896 Monotonic Prime Factors |
ユーザー | torus711 |
提出日時 | 2024-09-20 21:40:56 |
言語 | C++23(gcc13) (gcc 13.2.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 436 ms / 2,000 ms |
コード長 | 6,268 bytes |
コンパイル時間 | 1,974 ms |
コンパイル使用メモリ | 167,668 KB |
実行使用メモリ | 9,984 KB |
最終ジャッジ日時 | 2024-09-20 21:41:04 |
合計ジャッジ時間 | 5,321 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 32 ms
9,984 KB |
testcase_01 | AC | 32 ms
9,984 KB |
testcase_02 | AC | 32 ms
9,956 KB |
testcase_03 | AC | 33 ms
9,856 KB |
testcase_04 | AC | 436 ms
9,984 KB |
testcase_05 | AC | 164 ms
9,856 KB |
testcase_06 | AC | 177 ms
9,856 KB |
testcase_07 | AC | 302 ms
9,700 KB |
testcase_08 | AC | 374 ms
9,984 KB |
testcase_09 | AC | 164 ms
9,856 KB |
testcase_10 | AC | 118 ms
9,880 KB |
testcase_11 | AC | 53 ms
9,984 KB |
testcase_12 | AC | 41 ms
9,840 KB |
testcase_13 | AC | 118 ms
9,856 KB |
testcase_14 | AC | 145 ms
9,836 KB |
testcase_15 | AC | 34 ms
9,984 KB |
testcase_16 | AC | 65 ms
9,856 KB |
testcase_17 | AC | 43 ms
9,984 KB |
testcase_18 | AC | 182 ms
9,904 KB |
testcase_19 | AC | 45 ms
9,856 KB |
ソースコード
#include <iostream> #include <iomanip> #include <sstream> #include <vector> #include <string> #include <set> #include <unordered_set> #include <map> #include <unordered_map> #include <stack> #include <queue> #include <deque> #include <algorithm> #include <functional> #include <iterator> #include <ranges> #include <limits> #include <numeric> #include <utility> #include <type_traits> #include <cmath> #include <cassert> #include <cstdio> using namespace std; using namespace placeholders; using LL = long long; using ULL = unsigned long long; using VI = vector< int >; using VVI = vector< vector< int > >; using VLL = vector< long long >; using VVLL = vector< vector< long long > >; using VS = vector< string >; using ISS = istringstream; using OSS = ostringstream; using PII = pair< int, int >; using VPII = vector< pair< int, int > >; template < typename T = int > using LIM = numeric_limits< T >; template < typename T = int > using OSI = ostream_iterator< T >; template < typename T > inline istream& operator>>( istream &s, vector< T > &v ){ for ( T &t : v ) { s >> t; } return s; } template < typename T > inline ostream& operator<<( ostream &s, const vector< T > &v ){ for ( int i = 0; i < int( v.size() ); ++i ){ s << ( " " + !i ) << v[i]; } return s; } void in_impl(){}; template < typename T, typename... TS > void in_impl( T &head, TS &... tail ){ cin >> head; in_impl( tail ... ); } #define IN( T, ... ) T __VA_ARGS__; in_impl( __VA_ARGS__ ); template < typename T, typename V > auto make_vector( const int n, const V &v ) { return vector< T >( n, v ); } template < typename T, typename... TS > auto make_vector( const int n, TS... ts ) { return vector< decltype( make_vector< T >( forward< TS >( ts )...) ) >( n, make_vector< T >( forward< TS >( ts )... ) ); } template < typename T, typename V > auto make_vector0() { return vector< T >(); } template < typename T, typename... TS > auto make_vector0( const int n, TS... ts ) { return vector< decltype( make_vector0< T >( forward< TS >( ts )...) ) >( n, make_vector0< T >( forward< TS >( ts )... ) ); } template < typename T > inline T fromString( const string &s ) { T res; istringstream iss( s ); iss >> res; return res; } template < typename T > inline string toString( const T &a ) { ostringstream oss; oss << a; return oss.str(); } #define NUMBERED( name, number ) NUMBERED2( name, number ) #define NUMBERED2( name, number ) name ## _ ## number #define REP1( n ) REP2( NUMBERED( REP_COUNTER, __LINE__ ), n ) #define REP2( i, n ) REP3( i, 0, n ) #define REP3( i, m, n ) for ( int i = ( int )( m ); i < ( int )( n ); ++i ) #define GET_REP( a, b, c, F, ... ) F #define REP( ... ) GET_REP( __VA_ARGS__, REP3, REP2, REP1 )( __VA_ARGS__ ) #define FOR( e, c ) for ( auto &&e : c ) #define ALL( c ) begin( c ), end( c ) #define AALL( a ) ( remove_all_extents< decltype( a ) >::type * )a, ( remove_all_extents< decltype( a ) >::type * )a + sizeof( a ) / sizeof( remove_all_extents< decltype( a ) >::type ) #define MAP_PRED( c ) transform( begin( c ), end( c ), begin( c ), bind( minus< int >(), _1, 1 ) ); #define SZ( v ) ( (int)( v ).size() ) #define EXISTS( c, e ) ( ( c ).find( e ) != ( c ).end() ) template < typename T > inline bool chmin( T &a, const T &b ){ if ( b < a ) { a = b; return true; } return false; } template < typename T > inline bool chmax( T &a, const T &b ){ if ( a < b ) { a = b; return true; } return false; } #define PB push_back #define EM emplace #define EB emplace_back #define BI back_inserter #define MP make_pair #define fst first #define snd second #define DUMP( x ) cerr << #x << " = " << ( x ) << endl // Λ Λ__ // /(*゚ー゚)/\ // /|  ̄U U ̄|\/ // | |/ constexpr int MOD = 998244353; // 素因数分解 O( √N ) vector< long long > primeFactorization( long long N ) { if ( N == 1 ) { return vector< long long >(); } vector< long long > result; for ( long long p = 2; p * p <= N; p++ ) { while ( !( N % p ) ) { result.push_back( p ); N /= p; } } if ( N != 1 ) { result.push_back( N ); } return result; } // a^x を mod で求める // 反復二乗法 // O( log x ) long long mod_pow( long long a, long long x, long long mod ) { a %= mod; long long res = 1; for ( ; x; x >>= 1, ( a *= a ) %= mod ) { if ( x & 1 ) { ( res *= a ) %= mod; } } return res; } // p が素数のとき、p を法とする剰余体での逆元を求める // Fermat の小定理を利用 // a^{ p - 1 } \equiv 1 ( mod p ) // a^{ p - 2 } \equiv a^{-1} ( mod p ) // incluide : mod_pow int mod_inverse( long long a, long long p ) { return mod_pow( a, p - 2, p ); } // 素数を法とする剰余体での n! を求める class modFact { private: const int MAX_N, MOD; vector<int> fact; public: modFact( const int n, const int mod ) : MAX_N( n ), MOD( mod ), fact( min( MAX_N + 1, MOD ) ) { fact[0] = 1; for ( int i = 1; i < (int)fact.size(); ++i ) { fact[i] = 1LL * fact[ i - 1 ] * i % MOD; } return; } int operator()( const int n ) { int e; return operator()( n, e ); } int operator()( const int n, int &e ) { e = 0; if ( n == 0 ) { return 1; } const long long res = operator()( n / MOD, e ); e += n / MOD; if ( n / MOD % 2 != 0 ) { return res * ( MOD - fact[ n % MOD ] ) % MOD; } return res * fact[ n % MOD ] % MOD; } }; // modfact( max_n, mod ) // ()( n ) // ()( n, e ) // nCr // include : modFact, mod_inverse class modComb { private: const int MOD; modFact mod_fact; public: modComb( const int n, const int mod ) : MOD( mod ), mod_fact( n, mod ) {}; int operator()( const int n, const int r ) { if ( n < 0 || r < 0 || n < r ) { return 0; } int e1, e2, e3; long long a1 = mod_fact( n, e1 ), a2 = mod_fact( r, e2 ), a3 = mod_fact( n - r, e3 ); if ( e1 > e2 + e3 ) { return 0; } return a1 * mod_inverse( a2 * a3 % MOD, MOD ) % MOD; } }; // modComb( n, mod ) // ()( n, r ) modComb nCr( 1'700'000, MOD ); int main() { cin.tie( nullptr ); ios::sync_with_stdio( false ); cout << setprecision( 12 ) << fixed; IN( int, Q ); int factors = 0; REP( Q ) { IN( int, A, B ); factors += SZ( primeFactorization( A ) ); cout << nCr( factors - 1, B - 1 ) << '\n'; } cout << flush; return 0; }