結果
問題 | No.2896 Monotonic Prime Factors |
ユーザー | k1suxu |
提出日時 | 2024-09-20 21:58:59 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 486 ms / 2,000 ms |
コード長 | 9,284 bytes |
コンパイル時間 | 4,823 ms |
コンパイル使用メモリ | 283,852 KB |
実行使用メモリ | 30,356 KB |
最終ジャッジ日時 | 2024-09-20 21:59:34 |
合計ジャッジ時間 | 7,989 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 18 |
ソースコード
#pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; #define rep(i,n) for(int i = 0; i < (int)n; i++) #define FOR(n) for(int i = 0; i < (int)n; i++) #define repi(i,a,b) for(int i = (int)a; i < (int)b; i++) #define all(x) x.begin(),x.end() //#define mp make_pair #define vi vector<int> #define vvi vector<vi> #define vvvi vector<vvi> #define vvvvi vector<vvvi> #define pii pair<int,int> #define vpii vector<pair<int,int>> template<typename T> bool chmax(T &a, const T b) {if(a<b) {a=b; return true;} else {return false;}} template<typename T> bool chmin(T &a, const T b) {if(a>b) {a=b; return true;} else {return false;}} using ll = long long; using ld = long double; using ull = unsigned long long; const ll INF = numeric_limits<long long>::max() / 2; const ld pi = 3.1415926535897932384626433832795028; const ll mod = 998244353; int dx[] = {1, 0, -1, 0, -1, -1, 1, 1}; int dy[] = {0, 1, 0, -1, -1, 1, -1, 1}; #define int long long struct fast_prime_factorize { private: vector<int> MinFactor; vector<bool> IsPrime; public: vector<int> primes; fast_prime_factorize(const int MAXN) : MinFactor(MAXN), IsPrime(MAXN) { for (int i = 0; i < MAXN; ++i) IsPrime[i] = true, MinFactor[i] = -1; IsPrime[0] = false; IsPrime[1] = false; MinFactor[0] = 0; MinFactor[1] = 1; for (int i = 2; i < MAXN; ++i) { if (IsPrime[i]) { MinFactor[i] = i; primes.push_back(i); for (int j = i*2; j < MAXN; j += i) { IsPrime[j] = false; if (MinFactor[j] == -1) MinFactor[j] = i; } } } } vector<pair<int,int> > factorize(int n) { vector<pair<int,int> > res; while (n != 1) { int prime = MinFactor[n]; int exp = 0; while (MinFactor[n] == prime) { ++exp; n /= prime; } res.push_back(make_pair(prime, exp)); } return res; } bool is_prime(int n) { return IsPrime[n]; } vector<int> All_Min_Factor() { return MinFactor; } vector<int> All_Primes() { return primes; } }sieve(200000); template<long long MOD> struct Modular_Int { using Mint_Type = Modular_Int<MOD>; long long x; Modular_Int() = default; Modular_Int(long long x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {} long long val() const { return (x%MOD+MOD)%MOD; } static long long get_mod() { return MOD; } Mint_Type& operator^=(long long d) { Mint_Type ret(1); long long nx = x; while(d) { if(d&1) ret *= nx; (nx *= nx) %= MOD; d >>= 1; } *this = ret; return *this; } Mint_Type operator^(long long d) const {return Mint_Type(*this) ^= d;} Mint_Type pow(long long d) const {return Mint_Type(*this) ^= d;} //use this basically Mint_Type inv() const { return Mint_Type(*this) ^ (MOD-2); } //only if the module number is not prime //Don't use. This is broken. // Mint_Type inv() const { // long long a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0; // while(b) { // long long t = a/b; // a -= t*b, swap(a, b); // u -= t*v, swap(u, v); // } // return Mint_Type(u); // } Mint_Type& operator+=(const Mint_Type other) { if((x += other.x) >= MOD) x -= MOD; return *this; } Mint_Type& operator-=(const Mint_Type other) { if((x -= other.x) < 0) x += MOD; return *this; } Mint_Type& operator*=(const Mint_Type other) { long long z = x; z *= other.x; z %= MOD; x = z; if(x < 0) x += MOD; return *this; } Mint_Type& operator/=(const Mint_Type other) { return *this = *this * other.inv(); } Mint_Type& operator++() { x++; if (x == MOD) x = 0; return *this; } Mint_Type& operator--() { if (x == 0) x = MOD; x--; return *this; } Mint_Type operator+(const Mint_Type other) const {return Mint_Type(*this) += other;} Mint_Type operator-(const Mint_Type other) const {return Mint_Type(*this) -= other;} Mint_Type operator*(const Mint_Type other) const {return Mint_Type(*this) *= other;} Mint_Type operator/(const Mint_Type other) const {return Mint_Type(*this) /= other;} Mint_Type& operator+=(const long long other) {Mint_Type other_(other); *this += other_; return *this;} Mint_Type& operator-=(const long long other) {Mint_Type other_(other); *this -= other_; return *this;} Mint_Type& operator*=(const long long other) {Mint_Type other_(other); *this *= other_; return *this;} Mint_Type& operator/=(const long long other) {Mint_Type other_(other); *this /= other_; return *this;} Mint_Type operator+(const long long other) const {return Mint_Type(*this) += other;} Mint_Type operator-(const long long other) const {return Mint_Type(*this) -= other;} Mint_Type operator*(const long long other) const {return Mint_Type(*this) *= other;} Mint_Type operator/(const long long other) const {return Mint_Type(*this) /= other;} bool operator==(const Mint_Type other) const {return (*this).val() == other.val();} bool operator!=(const Mint_Type other) const {return (*this).val() != other.val();} bool operator==(const long long other) const {return (*this).val() == other;} bool operator!=(const long long other) const {return (*this).val() != other;} Mint_Type operator-() const {return Mint_Type(0LL)-Mint_Type(*this);} //-1: sqrtが存在しない //複数存在する場合どれを返すかは不明 long long get_sqrt() const { long long a = val(), p = get_mod(); if(a == 0) return 0; if(p == 2) return a; if(Mint_Type(a).pow((p - 1) >> 1).val() != 1) return -1; long long b = 1; while(Mint_Type(b).pow((p - 1) >> 1).val() == 1) ++b; long long e = 0, m = p - 1; while(m % 2 == 0) m >>= 1, ++e; long long x = Mint_Type(a).pow((m - 1) >> 1).val(); long long y = a * (x * x % p) % p; (x *= a) %= p; long long z = Mint_Type(b).pow(m).val(); while(y != 1) { long long j = 0, t = y; while(t != 1) { j += 1; (t *= t) %= p; } z = Mint_Type(z).pow((long long)1 << (e - j - 1)).val(); (x *= z) %= p; (z *= z) %= p; (y *= z) %= p; e = j; } return x; } template <typename T> friend Mint_Type operator+(T t, const Mint_Type& o) { return o + t; } template <typename T> friend Mint_Type operator-(T t, const Mint_Type& o) { return -o + t; } template <typename T> friend Mint_Type operator*(T t, const Mint_Type& o) { return o * t; } template <typename T> friend Mint_Type operator/(T t, const Mint_Type& o) { return o.inv() * t; } }; // TODO: SELECT MOD_VAL // const long long MOD_VAL = 1e9+7; const long long MOD_VAL = 998244353; using mint = Modular_Int<MOD_VAL>; istream& operator>>(istream& is, mint& x) { long long X; is >> X; x = X; return is; } ostream& operator<<(ostream& os, mint& x) { os << x.val(); return os; } // 1e9 + 7をmodとして使いたいときに注意!!!!特にCFやCCなどのAtCoder以外 vector<mint> fact = {1}, fact_inv = {1}; void factor_init(long long n) { ++n; fact.resize(n, 0); fact_inv.resize(n, 0); fact[0] = 1; repi(i, 1, n) fact[i] = (fact[i - 1] * i); fact_inv[n-1] = fact[n-1].inv(); for(int i = n-1; i > 0; --i) fact_inv[i-1] = fact_inv[i] * i; } mint P(long long n, long long k) { if(n<k) { cerr << "\nAssertion Failed!!\n"; cerr << "Expression N >= K, "; cerr << "where n=" << n << ",k=" << k << "\n\n"; return 0; } while(n > fact.size()-1) { fact.push_back(fact.back() * fact.size()); fact_inv.push_back(fact.back().inv()); } return fact[n] * fact_inv[n-k]; } mint C(long long n, long long k) { if(n<k) { cerr << "\nAssertion Failed!!\n"; cerr << "Expression N >= K, "; cerr << "where n=" << n << ",k=" << k << "\n\n"; return 0; } while(n > fact.size()-1) { fact.push_back(fact.back() * fact.size()); fact_inv.push_back(fact.back().inv()); } return fact[n]*fact_inv[n-k]*fact_inv[k]; } mint H(long long n, long long k) { assert(n>=1); return C(n+k-1, k); } mint Cat(long long n) { return C(2*n, n)-C(2*n, n-1); } void solve() { int prime_num = 0; int q; cin >> q; while(q--) { int a, b; cin >> a >> b; vpii p = sieve.factorize(a); for(auto &e : p) prime_num += e.second; cout << (prime_num < b? 0 : C(prime_num-1, b-1).val()) << endl; } } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); solve(); return 0; }