結果
問題 | No.2896 Monotonic Prime Factors |
ユーザー |
|
提出日時 | 2024-09-20 22:10:59 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 160 ms / 2,000 ms |
コード長 | 4,211 bytes |
コンパイル時間 | 2,126 ms |
コンパイル使用メモリ | 175,108 KB |
実行使用メモリ | 46,972 KB |
最終ジャッジ日時 | 2024-09-20 22:11:25 |
合計ジャッジ時間 | 3,759 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 18 |
ソースコード
#include<bits/stdc++.h>using namespace std;using ll = long long;#define all(a) (a).begin(), (a).end()#define pb push_back#define fi first#define se secondmt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());const ll MOD1000000007 = 1000000007;const ll MOD998244353 = 998244353;const ll MOD[3] = {999727999, 1070777777, 1000000007};const ll LINF = 1LL << 60LL;const int IINF = (1 << 30) - 2;template<long long mod>class modint{long long x;public:modint(long long x=0) : x((x%mod+mod)%mod) {}modint operator-() const {return modint(-x);}bool operator==(const modint& a){if(x == a) return true;else return false;}bool operator==(long long a){if(x == a) return true;else return false;}bool operator!=(const modint& a){if(x != a) return true;else return false;}bool operator!=(long long a){if(x != a) return true;else return false;}modint& operator+=(const modint& a) {if ((x += a.x) >= mod) x -= mod;return *this;}modint& operator-=(const modint& a) {if ((x += mod-a.x) >= mod) x -= mod;return *this;}modint& operator*=(const modint& a) {(x *= a.x) %= mod;return *this;}modint operator+(const modint& a) const {modint res(*this);return res+=a;}modint operator-(const modint& a) const {modint res(*this);return res-=a;}modint operator*(const modint& a) const {modint res(*this);return res*=a;}modint pow(long long t) const {if (!t) return 1;modint a = pow(t>>1);a *= a;if (t&1) a *= *this;return a;}// for prime modmodint inv() const {return pow(mod-2);}modint& operator/=(const modint& a) {return (*this) *= a.inv();}modint operator/(const modint& a) const {modint res(*this);return res/=a;}friend std::istream& operator>>(std::istream& is, modint& m) noexcept {is >> m.x;m.x %= mod;if (m.x < 0) m.x += mod;return is;}friend ostream& operator<<(ostream& os, const modint& m){os << m.x;return os;}};using mint = modint<MOD998244353>;template<typename T>struct combination{vector<T> fac, ifac;combination(size_t n=0) : fac(1, 1), ifac(1, 1){make_table(n);}void make_table(size_t n){if(fac.size()>n) return;size_t now = fac.size();n = max(n, now*2);fac.resize(n+1);ifac.resize(n+1);for(size_t i=now; i<=n; i++) fac[i] = fac[i-1]*i;ifac[n]=T(1)/fac[n];for(size_t i=n; i-->now; ) ifac[i] = ifac[i+1]*(i+1);}T factorial(size_t n){make_table(n);return fac[n];}T invfac(size_t n){make_table(n);return ifac[n];}T P(size_t n, size_t k){if(n < k) return 0;make_table(n);return fac[n]*ifac[n-k];}T C(size_t n, size_t k){if(n < k) return 0;make_table(n);return fac[n]*ifac[n-k]*ifac[k];}T H(size_t n, size_t k){if(n==0) return k==0?1:0;return C(n-1+k, k);}};combination<mint> comb;void solve(){int MAX = 1e5;vector<bool> is_prime(MAX+1, true);is_prime[0] = is_prime[1] = false;for(int i=2; i<=MAX; i++){if(!is_prime[i]) continue;for(int j=2*i; j<=MAX; j+=i){is_prime[j] = false;}}vector<int> prime;for(int i=0; i<=400; i++) if(is_prime[i]) prime.pb(i);int q; cin >> q;int cnt = 0;while(q--){int a, b; cin >> a >> b;for(int p : prime){while(a%p==0){cnt++;a/=p;}}if(a != 1) cnt++;mint ans = 0;if(cnt>=b) ans = comb.C(cnt-1, b-1);cout << ans << '\n';}}int main(){cin.tie(nullptr);ios::sync_with_stdio(false);int T=1;//cin >> T;while(T--) solve();}