結果
問題 | No.2896 Monotonic Prime Factors |
ユーザー | deuteridayo |
提出日時 | 2024-09-20 22:24:38 |
言語 | C++17(clang) (17.0.6 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 523 ms / 2,000 ms |
コード長 | 5,866 bytes |
コンパイル時間 | 7,814 ms |
コンパイル使用メモリ | 183,524 KB |
実行使用メモリ | 226,816 KB |
最終ジャッジ日時 | 2024-09-20 22:25:23 |
合計ジャッジ時間 | 19,424 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 237 ms
225,128 KB |
testcase_01 | AC | 286 ms
225,084 KB |
testcase_02 | AC | 234 ms
225,152 KB |
testcase_03 | AC | 257 ms
225,024 KB |
testcase_04 | AC | 485 ms
226,688 KB |
testcase_05 | AC | 485 ms
226,688 KB |
testcase_06 | AC | 455 ms
226,688 KB |
testcase_07 | AC | 521 ms
226,688 KB |
testcase_08 | AC | 497 ms
226,732 KB |
testcase_09 | AC | 476 ms
226,816 KB |
testcase_10 | AC | 371 ms
225,916 KB |
testcase_11 | AC | 266 ms
225,296 KB |
testcase_12 | AC | 292 ms
225,216 KB |
testcase_13 | AC | 391 ms
226,048 KB |
testcase_14 | AC | 434 ms
226,184 KB |
testcase_15 | AC | 243 ms
225,236 KB |
testcase_16 | AC | 356 ms
225,472 KB |
testcase_17 | AC | 260 ms
225,280 KB |
testcase_18 | AC | 523 ms
226,512 KB |
testcase_19 | AC | 264 ms
225,376 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; using namespace atcoder; using lint = long long; using ulint = unsigned long long; using llint = __int128_t; struct edge; using graph = vector<vector<edge>>; #define endl '\n' constexpr int INF = 1<<30; constexpr lint INF64 = 1LL<<61; constexpr lint mod107 = 1e9+7; using mint107 = modint1000000007; constexpr long mod = 998244353; using mint = modint998244353; lint ceilDiv(lint x, lint y){if(x >= 0){return (x+y-1)/y;}else{return x/y;}} lint floorDiv(lint x, lint y){if(x >= 0){return x/y;}else{return (x-y+1)/y;}} lint Sqrt(lint x) {assert(x >= 0); lint ans = sqrt(x); while(ans*ans > x)ans--; while((ans+1)*(ans+1)<=x)ans++; return ans;} lint gcd(lint a,lint b){if(a<b)swap(a,b);if(a%b==0)return b;else return gcd(b,a%b);} lint lcm(lint a,lint b){return (a / gcd(a,b)) * b;} double Dist(double x1, double y1, double x2, double y2){return sqrt(pow(x1-x2, 2) + pow(y1-y2,2));} lint DistSqr(lint x1, lint y1, lint x2, lint y2){return (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2); } string toString(lint n){string ans = "";if(n == 0){ans += "0";}else{while(n > 0){int a = n%10;char b = '0' + a;string c = "";c += b;n /= 10;ans = c + ans;}}return ans;} string toString(lint n, lint k){string ans = toString(n);string tmp = "";while(ans.length() + tmp.length() < k){tmp += "0";}return tmp + ans;} vector<lint>prime;void makePrime(lint n){prime.push_back(2);for(lint i=3;i<=n;i+=2){bool chk = true;for(lint j=0;j<prime.size() && prime[j]*prime[j] <= i;j++){if(i % prime[j]==0){chk=false;break;}}if(chk)prime.push_back(i);}} lint Kai[20000001]; bool firstCallnCr = true; lint ncrmodp(lint n,lint r,lint p){ if(firstCallnCr){ Kai[0] = 1; for(int i=1;i<=20000000;i++){ Kai[i] = Kai[i-1] * i; Kai[i] %= p;} firstCallnCr = false;} if(n<0)return 0; if(n < r)return 0;if(n==0)return 1;lint ans = Kai[n];lint tmp = (Kai[r] * Kai[n-r]) % p;for(lint i=1;i<=p-2;i*=2){if(i & p-2){ans *= tmp;ans %= p;}tmp *= tmp;tmp %= p;}return ans;} #define rep(i, n) for(int i = 0; i < n; i++) #define repp(i, x, y) for(int i = x; i < y; i++) #define vec vector #define pb push_back #define eb emplace_back #define se second #define fi first #define al(x) x.begin(),x.end() #define ral(x) x.rbegin(),x.rend() unsigned long Rand() { static random_device seed; static mt19937_64 engine(seed()); return engine(); } struct Point { lint x, y; int quad; Point(lint X, lint Y) { x = X; y = Y; quad = getQuad(); } int getQuad() { if(x >= 0) { if(y >= 0) return 1; else return 4; } else { if(y >= 0) return 2; else return 3; } } }; bool operator<(const Point &left, const Point &right) { if(left.quad == right.quad) { return left.y * right.x < left.x * right.y; } else { return left.quad < right.quad; } } struct Frac { lint upper, lower; Frac() { Frac(0,1); } Frac(lint u, lint l) { assert(l != 0); if(u <= 0 && l < 0) { upper = -u; lower = -l; } else { upper = u; lower = l; } reduction(); } Frac(lint u) { upper = u; lower = 1; } void reduction() { if(upper != 0) { lint g = gcd(abs(upper), abs(lower)); upper /= g; lower /= g; if(lower < 0) {lower *= -1; upper *= -1; } } else { lower = 1; } } Frac operator+(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower + lower*other.upper; return Frac(U, L); } Frac operator-(const Frac &other) { lint L = lower * other.lower; lint U = upper*other.lower - lower*other.upper; upper = U; lower = L; return Frac(U, L); } bool operator<=(const Frac &other) { return upper*other.lower <= lower*other.upper; } Frac operator*(const Frac &other) { lint L = lower * other.lower; lint U = upper * other.upper; return Frac(U, L); } Frac operator/(const Frac &other) { assert(other.upper != 0); lint L = lower * other.upper; lint U = upper * other.lower; return Frac(U, L); } }; bool operator<(const Frac &left, const Frac &right) { llint L = left.upper; L *= right.lower; llint R = right.upper; R *= left.lower; return L < R; } lint extGCD(lint a, lint b, lint &x, lint &y) { if (b == 0) { x = 1; y = 0; return a; } lint d = extGCD(b, a%b, y, x); y -= a/b * x; return d; } struct edge{ edge(lint v, lint c = 1) {to = v, cost = c;} lint to; lint cost; }; vector<lint>dijkstra(int s, graph &g) { vec<lint>ret(g.size(), INF64); priority_queue<pair<lint, lint>>que; que.push({-0, s}); ret[s] = 0; while(!que.empty()) { auto q = que.top(); que.pop(); for(auto&& e: g[q.second]) { if(ret[e.to] > -q.first + e.cost) { ret[e.to] = -q.first + e.cost; que.push({-ret[e.to], e.to}); } } } return ret; } int main(){ int q; cin >> q; lint a[q], b[q]; makePrime(400); vec<vec<lint>>cnt(100001, vec<lint>(prime.size())); vec<lint>ret(100001); for(lint i = 1; i <= 100000; i++) { lint n = i; rep(j, prime.size()) { while(n % prime[j] == 0) { cnt[i][j]++; n /= prime[j]; } } ret[i] = n; } lint C = 0; rep(qq, q) { cin >> a[qq] >> b[qq]; for(lint i: cnt[a[qq]]) { C += i; } if(ret[a[qq]] > 1) C++; // cerr << C << " "; if(b[qq] > C) { cout << 0 << endl; } else { cout << ncrmodp(C-1, C-b[qq], mod) << endl; } } }