結果

問題 No.2895 Zero XOR Subset
ユーザー wsrtrtwsrtrt
提出日時 2024-09-20 22:52:07
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 12,033 bytes
コンパイル時間 5,998 ms
コンパイル使用メモリ 318,556 KB
実行使用メモリ 10,664 KB
最終ジャッジ日時 2024-09-20 22:52:21
合計ジャッジ時間 12,432 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
6,656 KB
testcase_01 AC 5 ms
6,784 KB
testcase_02 WA -
testcase_03 AC 6 ms
6,656 KB
testcase_04 AC 6 ms
6,528 KB
testcase_05 AC 6 ms
6,656 KB
testcase_06 WA -
testcase_07 AC 6 ms
6,528 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 AC 7 ms
6,656 KB
testcase_11 AC 6 ms
6,656 KB
testcase_12 WA -
testcase_13 WA -
testcase_14 AC 7 ms
6,656 KB
testcase_15 WA -
testcase_16 WA -
testcase_17 AC 8 ms
6,784 KB
testcase_18 WA -
testcase_19 WA -
testcase_20 AC 7 ms
6,656 KB
testcase_21 AC 8 ms
6,656 KB
testcase_22 WA -
testcase_23 AC 6 ms
6,656 KB
testcase_24 AC 6 ms
6,656 KB
testcase_25 WA -
testcase_26 WA -
testcase_27 AC 7 ms
6,656 KB
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 AC 7 ms
6,656 KB
testcase_36 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define INT(...)                                                                                                                                               \
    int __VA_ARGS__;                                                                                                                                           \
    IN(__VA_ARGS__)
#define LL(...)                                                                                                                                                \
    ll __VA_ARGS__;                                                                                                                                            \
    IN(__VA_ARGS__)
#define STR(...)                                                                                                                                               \
    string __VA_ARGS__;                                                                                                                                        \
    IN(__VA_ARGS__)
#define CHR(...)                                                                                                                                               \
    char __VA_ARGS__;                                                                                                                                          \
    IN(__VA_ARGS__)
#define DBL(...)                                                                                                                                               \
    double __VA_ARGS__;                                                                                                                                        \
    IN(__VA_ARGS__)
#define ll long long
#define cout std::cout
#define yes cout<<"Yes"<<"\n"
#define no cout<<"No"<<"\n"
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
#define allr(x) (x).rbegin(),(x).rend()
#define SUM(v) accumulate(all(v), 0LL)
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define pii pair<int, int>
#define pll pair<long long,long long>
#define pb push_back
#define eb emplace_back
#define ff first
#define ss second
#define vi vector<int>
#define vll vector<long long>
#define vc vector<char>
#define vvi vector<vector<int>> 
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define VEC(type, name, size)                                                                                                                                  \
    vector<type> name(size);                                                                                                                                   \
    IN(name)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }
template <class T> void scan(vector<T> &);
template <class T> void scan(vector<T> &a) {
    for(auto &i : a) scan(i);
}
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
    scan(head);
    IN(tail...);
}
template <class T> void print(const T &a) { cout << a; }
void OUT() { cout << endl; }
template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {
    print(head);
    if(sizeof...(tail)) cout << ' ';
    OUT(tail...);
}
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define VV(type, name, h, w)                                                                                                                                   \
    vector<vector<type>> name(h, vector<type>(w));                                                                                                             \
    IN(name)
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)                                                                                                                         \
    vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>;
template <class T> pair<T, T> operator-(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff - y.ff, x.ss - y.ss); }
template <class T> pair<T, T> operator+(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff + y.ff, x.ss + y.ss); }
template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.ff, r.ff), min(l.ss, r.ss)); }
template <class T> vector<T> &operator--(vector<T> &v) {
    fore(e, v) e--;
    return v;
}
template <class T> vector<T> operator--(vector<T> &v, int) {
    auto res = v;
    fore(e, v) e--;
    return res;
}
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())
//座標圧縮
template <typename T> void zip(vector<T> &x) {
    vector<T> y = x;
    UNIQUE(y);
    for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }
}
template <class T> T ceil(T x, T y) {
    assert(y >= 1);
    return (x > 0 ? (x + y - 1) / y : x / y);
}
template <class T> T floor(T x, T y) {
    assert(y >= 1);
    return (x > 0 ? x / y : (x + y - 1) / y);
}
long long POW(long long x, int n) {
    long long res = 1LL;
    for(; n; n >>= 1, x *= x)
        if(n & 1) res *= x;
    return res;
}
//0^n=0
long long modpow(long long a, long long n, long long mod) {
    a%=mod;
    assert(a!=0||n!=0);
    if(a==0)return 0;
    long long res = 1;
    while (n > 0) {
        if (n & 1) res = res * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return res;
}
//return 0<=a&&a<h&&0<=b&&b<w;
inline bool ingrid(int a,int b,int h,int w){return 0<=a&&a<h&&0<=b&&b<w;}
//return return 0<=a&&a<n;
inline bool inl(int a,int n){return 0<=a&&a<n;}
// bit 演算系
ll pow2(int i) { return 1LL << i; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }
// int allbit(int n) { return (1 << n) - 1; }
ll allbit(ll n) { return (1LL << n) - 1; }
int popcount(signed t) { return __builtin_popcount(t); }
int popcount(ll t) { return __builtin_popcountll(t); }
bool ispow2(int i) { return i && (i & -i) == i; }
int in() {
    int x;
    cin >> x;
    return x;
}
ll lin() {
    unsigned long long x;
    cin >> x;
    return x;
}
long long sqrtll(long long x) {
    assert(x >= 0);
    long long rev = sqrt(x);
    while(rev * rev > x) --rev;
    while((rev+1) * (rev+1)<=x) ++rev;
    return rev;
}
int logN(long long n){
    int ret=1;
    while((1LL<<ret)<n)ret++;
    return ret;
}
const double PI=3.1415926535897932384626433832795028841971;
const ll MOD = 998244353;
const int INFI = numeric_limits<int>::max() / 2; const long long INFL = numeric_limits<long long>::max() / 2;
#define inf INFINITY

template<class T>
void debug(vector<T> a){
    rep(i,0,(int)a.size()){
        cout<<a[i]<<' ';
    }
    cout<<endl;
    return;
}

bool palindrome(const string& s){
    return equal(all(s),s.rbegin());
}

template <std::uint_fast64_t Modulus> class modint {
    using u64 = std::uint_fast64_t;
public:
    u64 a;
    constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
    constexpr u64 &val() noexcept { return a; }
    constexpr const u64 &val() const noexcept { return a; }
    constexpr modint operator+(const modint rhs) const noexcept {
        return modint(*this) += rhs;
    }
    constexpr modint operator-(const modint rhs) const noexcept {
        return modint(*this) -= rhs;
    }
    constexpr modint operator*(const modint rhs) const noexcept {
        return modint(*this) *= rhs;
    }
    constexpr modint operator/(const modint rhs) const noexcept {
        return modint(*this) /= rhs;
    }
    constexpr modint &operator+=(const modint rhs) noexcept {
        a += rhs.a;
        if (a >= Modulus) {
            a -= Modulus;
        }
        return *this;
    }
    constexpr modint &operator-=(const modint rhs) noexcept {
        if (a < rhs.a) {
            a += Modulus;
        }
        a -= rhs.a;
        return *this;
    }
    constexpr modint &operator*=(const modint rhs) noexcept {
        a = a * rhs.a % Modulus;
        return *this;
    }
    constexpr modint &operator/=(modint rhs) noexcept {
        u64 exp = Modulus - 2;
        while (exp) {
        if (exp % 2) {
          *this *= rhs;
        }
        rhs *= rhs;
        exp /= 2;
        }
        return *this;
    }
    friend bool operator==(const modint& a,const modint& b) { return a.val()==b.val(); }
    friend bool operator!=(const modint& a,const modint& b) { return a.val()!=b.val(); }
};
using mint9=modint<998244353>;
using mint1=modint<1000000007>;
constexpr pii dx4[4] = {pii{-1, 0}, pii{0, 1}, pii{1, 0}, pii{0, -1}};
constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};
constexpr pii dx[8] = { {-1, 0}, {0, -1}};

#define el "\n"
#define endl "\n"
#define fastio std::cin.sync_with_stdio(false);std::cin.tie(nullptr);


const int MAX_ROW = 65; // to be set appropriately
const int MAX_COL = 200200; // to be set appropriately
struct BitMatrix {
    int H, W;
    bitset<MAX_COL> val[MAX_ROW];
    BitMatrix(int m = 1, int n = 1) : H(m), W(n) {}
    inline bitset<MAX_COL>& operator [] (int i) {return val[i];}
};

int GaussJordan(BitMatrix &A, bool is_extended = false) {
    int rank = 0;
    for (int col = 0; col < A.W; ++col) {
        if (is_extended && col == A.W - 1) break;
        int pivot = -1;
        for (int row = rank; row < A.H; ++row) {
            if (A[row][col]) {
                pivot = row;
                break;
            }
        }
        if (pivot == -1) continue;
        swap(A[pivot], A[rank]);
        for (int row = 0; row < A.H; ++row) {
            if (row != rank && A[row][col]) A[row] ^= A[rank];
        }
        ++rank;
    }
    return rank;
}

int linear_equation(BitMatrix &A, vector<int> b, vector<int> &res) {
    int m = A.H, n = A.W;
    BitMatrix M(m, n + 1);
    for (int i = 0; i < m; ++i) {
        for (int j = 0; j < n; ++j) M[i][j] = A[i][j];
        M[i][n] = b[i];
    }
    int rank = GaussJordan(M, true);
    // check if it has no solution
    for (int row = rank; row < m; ++row) if (M[row][n]) return -1;

    // answer
    res.assign(n, 0);
    for (int i = 0; i < rank; ++i) res[i] = M[i][n];
    A=M;
    return rank;
}

int main(){
    fastio
    INT(n);
    VEC(ll,a,n);
    BitMatrix mt(61,n);
    rep(i,0,n){
        rep(j,0,61){
            if((a[i]>>j)&1)mt[j][i]=1;
        }
    }
    vi tmp;
    vi e;
    rep(i,0,61)e.pb(0);
    int rank=linear_equation(mt,e,tmp);
    if(rank==n){
        cout<<-1<<el;
        return 0;
    }
    vi ans(n);
    rep(i,0,61){
        int cnt=0;
        rep(j,0,n){
            if(mt[i][j])cnt++;
        }
        if(cnt%2==0&&cnt!=0){
            rep(j,0,n){
                ans[j]=mt[i][j];
            }
        }
    }
    vi b;
    rep(i,0,n){
        if(ans[i])b.pb(i+1);
    }
    OUT(b.size());
    debug(b);

	return 0;
}

/*

*/
0