結果
問題 | No.2896 Monotonic Prime Factors |
ユーザー | pitP |
提出日時 | 2024-09-21 00:11:06 |
言語 | C++23(gcc13) (gcc 13.2.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 301 ms / 2,000 ms |
コード長 | 6,295 bytes |
コンパイル時間 | 7,096 ms |
コンパイル使用メモリ | 338,304 KB |
実行使用メモリ | 51,552 KB |
最終ジャッジ日時 | 2024-09-21 00:11:22 |
合計ジャッジ時間 | 12,670 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 129 ms
51,456 KB |
testcase_01 | AC | 102 ms
51,492 KB |
testcase_02 | AC | 93 ms
51,380 KB |
testcase_03 | AC | 99 ms
51,520 KB |
testcase_04 | AC | 262 ms
51,400 KB |
testcase_05 | AC | 286 ms
51,504 KB |
testcase_06 | AC | 301 ms
51,508 KB |
testcase_07 | AC | 258 ms
51,496 KB |
testcase_08 | AC | 263 ms
51,384 KB |
testcase_09 | AC | 284 ms
51,328 KB |
testcase_10 | AC | 198 ms
51,456 KB |
testcase_11 | AC | 117 ms
51,384 KB |
testcase_12 | AC | 110 ms
51,328 KB |
testcase_13 | AC | 196 ms
51,520 KB |
testcase_14 | AC | 220 ms
51,328 KB |
testcase_15 | AC | 106 ms
51,552 KB |
testcase_16 | AC | 136 ms
51,348 KB |
testcase_17 | AC | 110 ms
51,368 KB |
testcase_18 | AC | 290 ms
51,384 KB |
testcase_19 | AC | 116 ms
51,528 KB |
ソースコード
#include <bits/stdc++.h> #include <atcoder/all> using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); } istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } typedef long long ll; typedef vector<vector<int>> Graph; typedef pair<int, int> pii; typedef pair<ll, ll> pll; #define FOR(i,l,r) for (int i = l;i < (int)(r); i++) #define rep(i,n) for (int i = 0;i < (int)(n); i++) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define my_sort(x) sort(x.begin(), x.end()) #define my_max(x) *max_element(all(x)) #define my_min(x) *min_element(all(x)) template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const int INF = (1<<30) - 1; const ll LINF = (1LL<<62) - 1; const double PI = acos(-1); vector<int> di = {1,0,-1,0}; vector<int> dj = {0,1,0,-1}; #ifdef LOCAL # include <debug_print.hpp> # define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else # define debug(...) (static_cast<void>(0)) #endif // https://qiita.com/drken/items/3beb679e54266f20ab63 struct Eratosthenes{ int N; vector<bool> isprime; vector<int> minfactor, mobius; Eratosthenes(int N_max = 1e7){init(N_max);} //初期化 void init(int N_max = 1e7){ int N = N_max; isprime.assign(N+1,true); minfactor.assign(N+1,-1); mobius.assign(N+1,1); //Eratosthenes O(NloglogN) isprime[0] = false; isprime[1] = false; for(int p=2;p<=N;p++){ if (!isprime[p])continue; minfactor[p] = p; mobius[p] = -1; //pの倍数の処理 for(int q=2*p;q<=N;q+=p){ isprime[q] = false; if (minfactor[q] == -1){ minfactor[q] = p; } if ((q/p) % p == 0) mobius[q] = 0; else mobius[q] *= -1; } } } //素数判定,O(1) bool judge_prime(int num){ return isprime[num]; } //素数列挙,O(N) vector<int> list_primes(int num = -1){ if (num == -1) num = N; vector<int> primes; for(int p=0;p<=num;p++){ if (isprime[p]) primes.push_back(p); } return primes; } //高速素因数分解,O(logN),{(素因数,個数)...} vector<pii> factorize(int x){ vector<pii> ans; while(x > 1){ int p = minfactor[x]; int e = 0; while(minfactor[x] == p){ x /= p; e++; } ans.push_back(make_pair(p,e)); } return ans; } //高速約数列挙 O(240(N <= 1e6),1344(N <= 1e9)) vector<int> divisors(int x){ vector<int> ans; ans.push_back(1); vector<pii> facts = factorize(x); for(auto [p,e]:facts){ int s = ans.size(); for(int i=0;i<s;i++){ int v = 1; for(int j=0;j<e;j++){ v *= p; ans.push_back(ans[i] * v); } } } sort(all(ans)); return ans; } //オイラーのphi関数 ll euler_phi(int x){ auto facts = factorize(x); ll res = x; for(auto [p, e]:facts){ res = res - res / p; } return res; } //メビウス関数 //mobius[1] = 1 //nが素数pで2回以上割り切れる -> mobius[n] = 0 //mobius[n] = pow(-1,Nの素数の種類) int my_mobius(int x){ return mobius[x]; } }; // f -> F, 累積和Fを求める template<typename T> vector<T> fast_zeta(vector<T> &f){ vector<T> res = f; int N = f.size() - 1; Eratosthenes er(N); for(int p=2;p<=N;p++){ if (!er.judge_prime(p)) continue; for(int k=(N/p);k>0;k--){ res[k] += res[k * p]; } } return res; } // F -> f, 累積和Fを分解する template<typename T> vector<T> fast_mobius(vector<T> &F){ vector<T> res = F; int N = F.size() - 1; Eratosthenes er(N); for(int p=2;p<=N;p++){ if (!er.judge_prime(p)) continue; for(int k=1;k<=(N/p);k++){ res[k] -= res[k * p]; } } return res; } template<typename T> vector<T> gcd_conv(vector<T> &f, vector<T> &g){ int N = max(f.size(), g.size()); vector<T> F(N+1) , G(N+1), H(N+1); for(int i=0;i<f.size();i++){ F[i] = f[i]; } for(int i=0;i<g.size();i++){ G[i] = g[i]; } F = fast_zeta(F); G = fast_zeta(G); for(int i=1;i<=N;i++){ H[i] = F[i] * G[i]; } H = fast_mobius(H); return H; } const int L = 100000; //https://drken1215.hatenablog.com/entry/2018/06/08/210000 //COMinit()を忘れない!!! const ll NMAX = 2020200; const ll MOD = 998244353; //const int MOD = 1e9+7; ll fac[NMAX],finv[NMAX],inv[NMAX]; void COMinit(){ fac[0] = fac[1] = 1LL; finv[0] = finv[1] = 1LL; inv[1] = 1LL; for (int i=2;i<NMAX;i++){ fac[i] = fac[i-1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD; finv[i] = finv[i-1] * inv[i] % MOD; } } ll nCr(int n,int k){ if (n<k) return 0LL; if (n < 0 || k < 0) return 0LL; return fac[n] * (finv[k] * finv[n-k] % MOD) % MOD; } ll nPr(int n,int k){ if (n<k) return 0LL; if (n < 0 || k < 0) return 0LL; return fac[n] * finv[n-k] % MOD; } ll nHr(int n,int r){ return nCr(n+r-1,r); } int main(){ cin.tie(0); ios_base::sync_with_stdio(false); COMinit(); Eratosthenes er(L); int N = 0; int Q; cin >> Q; while(Q--){ int A, B; cin >> A >> B; for(auto [p, e] : er.factorize(A)){ N += e; } cout << nCr(N - 1, B - 1) << endl; } }