結果
問題 | No.2883 K-powered Sum of Fibonacci |
ユーザー | nonon |
提出日時 | 2024-09-21 12:55:55 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 4 ms / 3,000 ms |
コード長 | 15,288 bytes |
コンパイル時間 | 3,359 ms |
コンパイル使用メモリ | 225,632 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-21 12:56:00 |
合計ジャッジ時間 | 4,080 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 3 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 3 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 4 ms
6,940 KB |
testcase_15 | AC | 3 ms
6,944 KB |
testcase_16 | AC | 1 ms
6,944 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 2 ms
6,944 KB |
testcase_19 | AC | 3 ms
6,940 KB |
testcase_20 | AC | 3 ms
6,940 KB |
testcase_21 | AC | 3 ms
6,940 KB |
testcase_22 | AC | 3 ms
6,940 KB |
testcase_23 | AC | 3 ms
6,944 KB |
testcase_24 | AC | 3 ms
6,940 KB |
testcase_25 | AC | 3 ms
6,940 KB |
testcase_26 | AC | 4 ms
6,944 KB |
testcase_27 | AC | 3 ms
6,940 KB |
testcase_28 | AC | 3 ms
6,944 KB |
testcase_29 | AC | 3 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,944 KB |
testcase_32 | AC | 2 ms
6,944 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 2 ms
6,940 KB |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | AC | 2 ms
6,944 KB |
testcase_39 | AC | 1 ms
6,940 KB |
testcase_40 | AC | 1 ms
6,944 KB |
testcase_41 | AC | 1 ms
6,944 KB |
testcase_42 | AC | 4 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; template<int MOD> struct modint { modint() : x(0) {} modint(long long v) { long long y = v % m(); if (y < 0) y += m(); x = (unsigned int)(y); } static modint raw(int v) { modint a; a.x = v; return a; } static constexpr int mod() { return m(); } unsigned int val() const { return x; } modint& operator++() { x++; if (x == m()) x = 0; return *this; } modint& operator--() { if (x == 0) x = m(); x--; return *this; } modint operator++(int) { modint res = *this; ++*this; return res; } modint operator--(int) { modint res = *this; --*this; return res; } modint& operator+=(const modint &r) { x += r.x; if (x >= m()) x -= m(); return *this; } modint& operator-=(const modint &r) { x -= r.x; if (x >= m()) x += m(); return *this; } modint& operator*=(const modint &r) { unsigned long long y = x; y *= r.x; x = (unsigned int)(y % m()); return *this; } modint &operator/=(const modint &r) { return *this = *this * r.inv(); } friend modint operator+(const modint &a, const modint &b) { return modint(a) += b; } friend modint operator-(const modint &a, const modint &b) { return modint(a) -= b; } friend modint operator*(const modint &a, const modint &b) { return modint(a) *= b; } friend modint operator/(const modint &a, const modint &b) { return modint(a) /= b; } friend bool operator==(const modint &a, const modint &b) { return a.x == b.x; } friend bool operator!=(const modint &a, const modint &b) { return a.x != b.x; } modint operator+() const { return *this; } modint operator-() const { return modint() - *this; } modint pow(long long k) const { assert(k >= 0); modint a = *this; modint res = 1; while (k > 0) { if (k & 1) res *= a; a *= a; k >>= 1; } return res; } modint inv() const { long long a = x, b = m(), u = 1, v = 0; while (b > 0) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return modint(u); } private: unsigned int x; static constexpr int m() { return MOD; } }; template<typename mint> struct Number_Theoretic_Transform { static vector<mint> dw, dw_inv; static int log; static mint root; static void ntt(vector<mint> &f) { init(); int n = f.size(); for (int m = n; m >>= 1;) { mint w = 1; for (int s = 0, k = 0; s < n; s += (m << 1)) { for (int i = s, j = s + m; i < s + m; i++, j++) { mint a = f[i], b = f[j] * w; f[i] = a + b; f[j] = a - b; } w *= dw[__builtin_ctz(++k)]; } } } static void intt(vector<mint> &f) { init(); int n = f.size(); for (int m = 1; m < n; m <<= 1) { mint w = 1; for (int s = 0, k = 0; s < n; s += (m << 1)) { for (int i = s, j = s + m; i < s + m; i++, j++) { mint a = f[i], b = f[j]; f[i] = a + b; f[j] = (a - b) * w; } w *= dw_inv[__builtin_ctz(++k)]; } } mint invn = mint(n).inv(); for (mint &x : f) x *= invn; } private: Number_Theoretic_Transform() = default; static void init() { if (log > 0) return; int mod = mint::mod(); int tmp = mod - 1; log = 1; while (tmp % 2 == 0) { tmp >>= 1; log++; } dw.resize(log); dw_inv.resize(log); for (int i = 0; i < log; i++) { dw[i] = -root.pow((mod - 1) >> (i + 2)); dw_inv[i] = dw[i].inv(); } } }; template<typename mint> vector<mint>Number_Theoretic_Transform<mint>::dw = vector<mint>(); template<typename mint> vector<mint>Number_Theoretic_Transform<mint>::dw_inv = vector<mint>(); template<typename mint> int Number_Theoretic_Transform<mint>::log = 0; template<typename mint> mint Number_Theoretic_Transform<mint>::root = 3; template<typename mint> struct Formal_Power_Series : vector<mint> { using FPS = Formal_Power_Series; using vector<mint>::vector; using NTT = Number_Theoretic_Transform<mint>; void ntt() { NTT::ntt(*this); } void intt() { NTT::intt(*this); } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &r) { for (mint &x : *this) x *= r; return *this; } FPS &operator/=(const mint &r) { mint invr = r.inv(); return *this *= invr; } FPS &operator+=(const FPS &f) { int n = this->size(), m = f.size(); if (n < m) this->resize(m); for (int i = 0; i < m; i++) (*this)[i] += f[i]; return *this; } FPS &operator-=(const FPS &f) { int n = this->size(), m = f.size(); if (n < m) this->resize(m); for (int i = 0; i < m; i++) (*this)[i] -= f[i]; return *this; } FPS &operator*=(const FPS &f) { *this = convolution(*this, f); return *this; } FPS &operator/=(const FPS &f) { return *this *= f.inv(); } FPS &operator%=(const FPS &f) { *this -= div(f) * f; this->shrink(); return *this; } FPS div(const FPS &f) const { if (this->size() < f.size()) return FPS{}; int n = this->size() - f.size() + 1; return (rev().pre(n) * f.rev().inv(n)).pre(n).rev(n); } FPS operator+(const mint &r) const { return FPS(*this) += r; } FPS operator-(const mint &r) const { return FPS(*this) -= r; } FPS operator*(const mint &r) const { return FPS(*this) *= r; } FPS operator/(const mint &r) const { return FPS(*this) /= r; } FPS operator+(const FPS &f) const { return FPS(*this) += f; } FPS operator-(const FPS &f) const { return FPS(*this) -= f; } FPS operator*(const FPS &f) const { return FPS(*this) *= f; } FPS operator/(const FPS &f) const { return FPS(*this) /= f; } FPS operator%(const FPS &f) const { return FPS(*this) %= f; } FPS operator-() const { return FPS{} - *this; } FPS operator<<(int n) const { FPS res(*this); res.insert(res.begin(), n, mint()); return res; } FPS operator>>(int n) const { if (int(this->size()) <= n) return FPS{}; FPS res(*this); res.erase(res.begin(), res.begin() + n); return res; } FPS &operator<<=(int n) { return *this = (*this) << n; } FPS &operator>>=(int n) { return *this = (*this) >> n; } FPS pre(int n) const { n = min(n, int(this->size())); return FPS(this->begin(), this->begin() + n); } FPS rev(int deg = -1) const { FPS res(*this); if (deg != -1) res.resize(deg, 0); reverse(res.begin(), res.end()); return res; } FPS dot(const FPS &f) const { int n = min(this->size(), f.size()); FPS res(n); for (int i = 0; i < n; i++) res[i] = (*this)[i] * f[i]; return res; } void shrink() { while (this->size() && this->back() == 0) { this->pop_back(); } } mint operator()(const mint &x) const { mint res = 0, powx = 1; for (const mint &a : *this) { res += a * powx; powx *= x; } return res; } FPS diff() const { int n = this->size(); if (n == 0) return FPS{}; FPS res(n - 1); for (int i = 1; i < n; i++) { res[i - 1] = i * (*this)[i]; } return res; } FPS integral() const { int n = this->size(); FPS res(n + 1); res[0] = 0; for (int i = 0; i < n; i++) { res[i + 1] = (*this)[i] / (i + 1); } return res; } FPS inv(int deg = -1) const { int n = this->size(); assert(n > 0); mint c = (*this)[0]; assert(c != 0); if (deg == -1) deg = n; FPS res(deg); res[0] = c.inv(); for (int d = 1; d < deg; d <<= 1) { FPS f(d << 1), g(d << 1); for (int i = 0; i < n && i < d << 1; i++) f[i] = (*this)[i]; for (int i = 0; i < d; i++) g[i] = res[i]; f.ntt(); g.ntt(); f = f.dot(g); f.intt(); for (int i = 0; i < d; i++) f[i] = 0; f.ntt(); f = f.dot(g); f.intt(); for (int i = d; i < deg && i < d << 1; i++) res[i] -= f[i]; } return res; } FPS exp(int deg = -1) const { int n = this->size(); if (deg == -1) deg = n; if (n == 0) { FPS res(deg); res[0] = 1; return res; } assert((*this)[0] == 0); vector<mint>inv; inv.reserve(deg + 1); inv.push_back(0); inv.push_back(1); auto inplace_diff = [](FPS &f) -> void { if (f.empty()) return; f.erase(f.begin()); for (int i = 0; i < int(f.size()); i++) f[i] *= i + 1; }; auto inplace_integral = [&](FPS &f) -> void { constexpr int mod = mint::mod(); while (inv.size() <= f.size()) { int i = inv.size(); inv.push_back(-inv[mod % i] * (mod / i)); } f.insert(f.begin(), 0); for (int i = 1; i < int(f.size()); i++) f[i] *= inv[i]; }; FPS b = {1, 1 < n ? (*this)[1] : 0}; FPS c = {1}, z1, z2 = {1, 1}; for (int d = 2; d < deg; d <<= 1) { FPS y = b; y.resize(d << 1); y.ntt(); z1 = z2; FPS z = y.dot(z1); z.intt(); fill(z.begin(), z.begin() + (d >> 1), 0); z.ntt(); z = z.dot(-z1); z.intt(); c.insert(c.end(), z.begin() + (d >> 1), z.end()); z2 = c; z2.resize(d << 1); z2.ntt(); FPS x(this->begin(), this->begin() + min(n, d)); inplace_diff(x); x.push_back(0); x.ntt(); x = x.dot(y); x.intt(); x -= b.diff(); x.resize(d << 1); for (int i = 0; i < d - 1; i++) x[i + d] = x[i], x[i] = 0; x.ntt(); x = x.dot(z2); x.intt(); x.pop_back(); inplace_integral(x); for (int i = d; i < min(n, d << 1); i++) x[i] += (*this)[i]; fill(x.begin(), x.begin() + d, 0); x.ntt(); x = x.dot(y); x.intt(); b.insert(b.end(), x.begin() + d, x.end()); } return FPS(b.begin(), b.begin() + deg); } FPS log(int deg = -1) const { assert((*this)[0] == 1); if (deg == -1) deg = this->size(); return (diff() * inv()).integral().pre(deg); } FPS pow(long long k, int deg = -1) const { if (deg == -1) deg = this->size(); if (k == 0) { FPS res(deg); res[0] = 1; return res; } FPS res(*this); int p = 0; while (p < int(res.size()) && res[p] == 0) p++; if (p > (deg - 1) / k) return FPS(deg); res >>= p; deg -= p * k; mint c = res[0]; res = ((res / c).log(deg) * k).exp(deg) * c.pow(k); res <<= p * k; return res; } private: FPS convolution(FPS f, FPS g, int deg = -1) { int n = f.size(), m = g.size(); if (n == 0 || m == 0) return FPS{}; int sz = 1; while (sz < n + m - 1) sz <<= 1; f.resize(sz); f.ntt(); g.resize(sz); g.ntt(); f = f.dot(g); f.intt(); if (deg == -1) deg = n + m - 1; f.resize(deg); return f; } }; template<typename mint> vector<mint> Berlekamp_Massey(const vector<mint> &a) { int n = a.size(); vector<mint> b = {1}, c = {1}; b.reserve(n + 1); c.reserve(n + 1); mint y = 1; for (int d = 1; d <= n; d ++) { int k = b.size(), l = c.size(); mint x = 0; for (int i = 0; i < l; i++) { x += c[i] * a[d - l + i]; } b.push_back(0); k++; if (x == 0) continue; mint buf = x / y; if (l < k) { auto tmp = c; c.insert(c.begin(), k - l, 0); for (int i = 0; i < k; i++) { c[k - 1 - i] -= buf * b[k - 1 - i]; } b = tmp; y = x; } else { for (int i = 0; i < k; i++) { c[l - 1 - i] -= buf * b[k - 1 - i]; } } } reverse(c.begin(), c.end()); for (mint &x : c) x = -x; return c; } template<typename FPS> typename FPS::value_type Bostan_Mori(FPS p, FPS q, long long k) { using mint = typename FPS::value_type; mint res = 0; if (p.size() >= q.size()) { FPS r = p.div(q); p -= q * r; p.shrink(); if (k < int(r.size())) res += r[k]; } if (p.empty()) return res; p.resize(q.size() - 1); auto sub = [&](const FPS &f, bool odd = false) -> FPS { int n = (f.size() + !odd) / 2; FPS g(n); for (int i = odd; i < int(f.size()); i += 2) { g[i / 2] = f[i]; } return g; }; while (k > 0) { FPS q2 = q; for (int i = 1; i < int(q2.size()); i += 2) { q2[i] = -q2[i]; } p = sub(p * q2, k & 1); q = sub(q * q2); k >>= 1; } return res + p[0]; } template<typename FPS> typename FPS::value_type linear_recurrence(FPS a, FPS c, long long k) { assert(a.size() == c.size()); c = FPS{1} - (c << 1); return Bostan_Mori((a * c).pre(a.size()), c, k); } template<typename mint> mint BMBM(const vector<mint> &x, long long k) { using FPS = Formal_Power_Series<mint>; auto tmp = Berlekamp_Massey(x); int n = tmp.size() - 1; FPS a(n), c(n); for (int i = 0; i < n; i++) { a[i] = x[i]; c[i] = tmp[i + 1]; } return linear_recurrence(a, c, k); } using mint = modint<998244353>; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); long long N; int K; cin >> N >> K; int M = 4 * K; vector<mint> F(M), A(M); F[0] = F[1] = 1; A[0] = 1, A[1] = 2; for (int i = 2; i < M; i++) { F[i] = F[i - 1] + F[i - 2]; A[i] = A[i - 1] + F[i].pow(K); } cout << BMBM(A, N - 1).val() << endl; }