結果
| 問題 |
No.2897 2集合間距離
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-09-21 14:03:32 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 633 ms / 3,500 ms |
| コード長 | 6,536 bytes |
| コンパイル時間 | 14,167 ms |
| コンパイル使用メモリ | 220,928 KB |
| 実行使用メモリ | 25,856 KB |
| 最終ジャッジ日時 | 2024-09-21 14:03:57 |
| 合計ジャッジ時間 | 20,146 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 24 |
ソースコード
// 曼哈顿距离点群搜索(NNS, nearest neighbor search)
package main
import (
"bufio"
"fmt"
"math/rand"
"os"
"sort"
)
func main() {
yukicoder2897()
}
func demo() {
n := rand.Intn(200) + 1
m := rand.Intn(200) + 1
from := make([][2]int, n)
to := make([][2]int, m)
for i := 0; i < n; i++ {
from[i] = [2]int{rand.Intn(1000) - 500, rand.Intn(1000) - 500}
}
for i := 0; i < m; i++ {
to[i] = [2]int{rand.Intn(1000) - 500, rand.Intn(1000) - 500}
}
dist, indexes := ManhattanNNS(from, to)
for i := 0; i < n; i++ {
for j := 0; j < m; j++ {
x1, y1 := from[i][0], from[i][1]
x2, y2 := to[j][0], to[j][1]
d := abs(x1-x2) + abs(y1-y2)
if dist[i] > d {
fmt.Println(from[i], to[j], dist[i], d)
panic(fmt.Sprintf("dist[i] > d, i=%d, j=%d, dist[i]=%d, d=%d", i, j, dist[i], d))
}
if j == indexes[i] && dist[i] != d {
panic("j == indexes[i] && dist[i] != d")
}
}
}
fmt.Println("OK")
}
// https://yukicoder.me/problems/no/2897
func yukicoder2897() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n int
fmt.Fscan(in, &n)
from := make([][2]int, n)
for i := 0; i < n; i++ {
fmt.Fscan(in, &from[i][0], &from[i][1])
}
var m int
fmt.Fscan(in, &m)
to := make([][2]int, m)
for i := 0; i < m; i++ {
fmt.Fscan(in, &to[i][0], &to[i][1])
}
dist, _ := ManhattanNNS(from, to)
res := dist[0]
for i := 1; i < n; i++ {
res = min(res, dist[i])
}
fmt.Fprintln(out, res)
}
const INF int = 1e18
// 给定点集 from 和 to,求 from 中的每个点到 to 中的点的曼哈顿距离的最小值, 以及最小值对应的索引.
func ManhattanNNS(from [][2]int, to [][2]int) (dist []int, indexes []int) {
if len(to) == 0 {
return
}
n, m := len(from), len(to)
points := make([][2]int, n+m)
for i, p := range from {
points[i] = p
}
for i, p := range to {
points[n+i] = p
}
ys := make([]int, m)
for i, p := range to {
ys[i] = p[1]
}
var getRank func(int) int
ys, getRank = sortedSet(ys)
indexes = make([]int, n)
dist = make([]int, n)
for i := 0; i < n; i++ {
indexes[i] = -1
dist[i] = INF
}
addResult := func(i, j int) {
if j == -1 {
return
}
dx := points[i][0] - points[j][0]
dy := points[i][1] - points[j][1]
cand := abs(dx) + abs(dy)
if dist[i] > cand {
dist[i] = cand
indexes[i] = j - n
}
}
order := make([]int, n+m)
for i := range order {
order[i] = i
}
sort.Slice(order, func(i, j int) bool {
return points[order[i]][0] < points[order[j]][0]
})
leaves := make([]E, len(ys))
for i := 0; i < len(ys); i++ {
leaves[i] = E{min_: INF, index: -1}
}
cal := func() {
seg1, seg2 := NewSegmentTree(leaves), NewSegmentTree(leaves)
for _, i := range order {
x, y := points[i][0], points[i][1]
idx := getRank(y)
if i < n {
addResult(i, seg1.Query(idx, len(ys)).index)
addResult(i, seg2.Query(0, idx).index)
} else {
seg1.Set(idx, E{y - x, i})
seg2.Set(idx, E{-(x + y), i})
}
}
}
cal()
for i, j := 0, len(order)-1; i < j; i, j = i+1, j-1 {
order[i], order[j] = order[j], order[i]
}
for i := 0; i < n+m; i++ {
points[i][0] = -points[i][0]
}
cal()
return
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
func sortedSet(xs []int) (sorted []int, getRank func(int) int) {
set := make(map[int]struct{}, len(xs))
for _, v := range xs {
set[v] = struct{}{}
}
sorted = make([]int, 0, len(set))
for k := range set {
sorted = append(sorted, k)
}
sort.Ints(sorted)
getRank = func(x int) int { return sort.SearchInts(sorted, x) }
return
}
// RangeMinWithIndex
type E = struct{ min_, index int }
func (*SegmentTree) e() E { return E{min_: INF, index: -1} }
func (*SegmentTree) op(a, b E) E {
if a.min_ < b.min_ {
return a
}
if a.min_ > b.min_ {
return b
}
return E{min_: a.min_, index: min(a.index, b.index)}
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
type SegmentTree struct {
n, size int
seg []E
}
func NewSegmentTree(leaves []E) *SegmentTree {
res := &SegmentTree{}
n := len(leaves)
size := 1
for size < n {
size <<= 1
}
seg := make([]E, size<<1)
for i := range seg {
seg[i] = res.e()
}
for i := 0; i < n; i++ {
seg[i+size] = leaves[i]
}
for i := size - 1; i > 0; i-- {
seg[i] = res.op(seg[i<<1], seg[i<<1|1])
}
res.n = n
res.size = size
res.seg = seg
return res
}
func (st *SegmentTree) Get(index int) E {
if index < 0 || index >= st.n {
return st.e()
}
return st.seg[index+st.size]
}
func (st *SegmentTree) Set(index int, value E) {
if index < 0 || index >= st.n {
return
}
index += st.size
st.seg[index] = value
for index >>= 1; index > 0; index >>= 1 {
st.seg[index] = st.op(st.seg[index<<1], st.seg[index<<1|1])
}
}
// [start, end)
func (st *SegmentTree) Query(start, end int) E {
if start < 0 {
start = 0
}
if end > st.n {
end = st.n
}
if start >= end {
return st.e()
}
leftRes, rightRes := st.e(), st.e()
start += st.size
end += st.size
for start < end {
if start&1 == 1 {
leftRes = st.op(leftRes, st.seg[start])
start++
}
if end&1 == 1 {
end--
rightRes = st.op(st.seg[end], rightRes)
}
start >>= 1
end >>= 1
}
return st.op(leftRes, rightRes)
}
func (st *SegmentTree) QueryAll() E { return st.seg[1] }
// 二分查询最大的 right 使得切片 [left:right] 内的值满足 predicate
func (st *SegmentTree) MaxRight(left int, predicate func(E) bool) int {
if left == st.n {
return st.n
}
left += st.size
res := st.e()
for {
for left&1 == 0 {
left >>= 1
}
if !predicate(st.op(res, st.seg[left])) {
for left < st.size {
left <<= 1
if predicate(st.op(res, st.seg[left])) {
res = st.op(res, st.seg[left])
left++
}
}
return left - st.size
}
res = st.op(res, st.seg[left])
left++
if (left & -left) == left {
break
}
}
return st.n
}
// 二分查询最小的 left 使得切片 [left:right] 内的值满足 predicate
func (st *SegmentTree) MinLeft(right int, predicate func(E) bool) int {
if right == 0 {
return 0
}
right += st.size
res := st.e()
for {
right--
for right > 1 && right&1 == 1 {
right >>= 1
}
if !predicate(st.op(st.seg[right], res)) {
for right < st.size {
right = right<<1 | 1
if predicate(st.op(st.seg[right], res)) {
res = st.op(st.seg[right], res)
right--
}
}
return right + 1 - st.size
}
res = st.op(st.seg[right], res)
if right&-right == right {
break
}
}
return 0
}