結果
問題 | No.1867 Partitions and Inversions |
ユーザー | ecottea |
提出日時 | 2024-09-24 15:05:41 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3,170 ms / 5,000 ms |
コード長 | 11,779 bytes |
コンパイル時間 | 7,499 ms |
コンパイル使用メモリ | 320,696 KB |
実行使用メモリ | 91,776 KB |
最終ジャッジ日時 | 2024-09-24 15:07:52 |
合計ジャッジ時間 | 126,986 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 3,067 ms
91,648 KB |
testcase_03 | AC | 3,110 ms
91,648 KB |
testcase_04 | AC | 3,086 ms
91,648 KB |
testcase_05 | AC | 3,022 ms
91,648 KB |
testcase_06 | AC | 3,077 ms
91,776 KB |
testcase_07 | AC | 3,076 ms
91,648 KB |
testcase_08 | AC | 3,170 ms
91,776 KB |
testcase_09 | AC | 3,086 ms
91,776 KB |
testcase_10 | AC | 3,048 ms
91,776 KB |
testcase_11 | AC | 3,082 ms
91,648 KB |
testcase_12 | AC | 3,153 ms
91,776 KB |
testcase_13 | AC | 3,046 ms
91,648 KB |
testcase_14 | AC | 3,164 ms
91,776 KB |
testcase_15 | AC | 3,069 ms
91,648 KB |
testcase_16 | AC | 3,110 ms
91,648 KB |
testcase_17 | AC | 2,815 ms
91,648 KB |
testcase_18 | AC | 3,008 ms
91,648 KB |
testcase_19 | AC | 3,058 ms
91,648 KB |
testcase_20 | AC | 2,881 ms
91,648 KB |
testcase_21 | AC | 3,016 ms
91,648 KB |
testcase_22 | AC | 3,067 ms
91,776 KB |
testcase_23 | AC | 3,044 ms
91,648 KB |
testcase_24 | AC | 2,841 ms
91,648 KB |
testcase_25 | AC | 3,048 ms
91,648 KB |
testcase_26 | AC | 3,068 ms
91,776 KB |
testcase_27 | AC | 2,974 ms
91,776 KB |
testcase_28 | AC | 3,051 ms
91,648 KB |
testcase_29 | AC | 3,054 ms
91,776 KB |
testcase_30 | AC | 3,079 ms
91,776 KB |
testcase_31 | AC | 2,772 ms
91,648 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 2 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,940 KB |
testcase_35 | AC | 2 ms
6,944 KB |
testcase_36 | AC | 2 ms
6,948 KB |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | AC | 39 ms
6,944 KB |
testcase_39 | AC | 39 ms
6,940 KB |
testcase_40 | AC | 40 ms
6,940 KB |
testcase_41 | AC | 40 ms
6,940 KB |
testcase_42 | AC | 39 ms
6,944 KB |
testcase_43 | AC | 1,148 ms
42,880 KB |
testcase_44 | AC | 1,125 ms
42,752 KB |
testcase_45 | AC | 1,124 ms
42,752 KB |
testcase_46 | AC | 1,122 ms
42,752 KB |
testcase_47 | AC | 1,137 ms
42,752 KB |
testcase_48 | AC | 1,095 ms
42,880 KB |
testcase_49 | AC | 1,089 ms
42,880 KB |
testcase_50 | AC | 1,122 ms
42,880 KB |
testcase_51 | AC | 1,140 ms
42,880 KB |
testcase_52 | AC | 1,120 ms
42,752 KB |
testcase_53 | AC | 1,129 ms
42,880 KB |
testcase_54 | AC | 1,132 ms
42,752 KB |
testcase_55 | AC | 1,103 ms
42,880 KB |
testcase_56 | AC | 1,135 ms
42,752 KB |
testcase_57 | AC | 1,124 ms
42,880 KB |
testcase_58 | AC | 1,104 ms
42,752 KB |
testcase_59 | AC | 1,038 ms
42,752 KB |
testcase_60 | AC | 1,097 ms
42,880 KB |
testcase_61 | AC | 1,140 ms
42,880 KB |
testcase_62 | AC | 1,109 ms
42,752 KB |
testcase_63 | AC | 2,402 ms
91,776 KB |
testcase_64 | AC | 2 ms
6,944 KB |
testcase_65 | AC | 2 ms
6,944 KB |
testcase_66 | AC | 2 ms
6,944 KB |
testcase_67 | AC | 2,208 ms
91,776 KB |
ソースコード
// QCFium 法 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); } template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = static_modint<1000000000>; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(...) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【座標圧縮】O(n log n) /* * a[0..n) を座標圧縮した結果を a_cp[0..n) に格納し,その値域の大きさを返す. * また xs[j] に圧縮された座標 j に対応する元の座標を格納する. * * a に重複する要素がなければ,a_cp[i] は a[i] が昇順で何番目かを表し, * xs[j] は昇順で j 番目の要素が何かを表す. */ template <class T> int coordinate_compression(const vector<T>& a, vi& a_cp, vector<T>* xs = nullptr) { // verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_o int n = sz(a); if (xs == nullptr) xs = new vector<T>; // *xs : a の x 座標のユニークな昇順列 *xs = a; uniq(*xs); // a[i] が xs において何番目かを求める. a_cp.resize(n); rep(i, n) a_cp[i] = lbpos(*xs, a[i]); return sz(*xs); } //【転倒数(座圧)】O(n log n) /* * a[0..n) の転倒数を返す. * * 利用:【座標圧縮】 */ template <class T> vl inversion_number_cc(const vector<T>& a) { // verify : https://onlinejudge.u-aizu.ac.jp/courses/lesson/1/ALDS1/all/ALDS1_5_D int n = sz(a); // b : a を座標圧縮した結果 vi b; int m = coordinate_compression(a, b); // fw[i] : 今まで見てきた範囲に値 i が何個あったか fenwick_tree<int> fw(m); vl res(n); // 位置について昇順に見ていく. rep(i, n) { fw.add(b[i], 1); // 自身より大きい数が今までに何個あったか調べ,加算する. res[i] = fw.sum(b[i] + 1, m) + (i > 0 ? res[i - 1] : 0); } return res; } //【monotone minima】O(w log h + h) /* * 与えられた monotone 行列 a[0..h)[0..w) について,各行の最小値の位置を並べたリストを返す. */ template <class FUNC> vi monotone_minima(int h, int w, const FUNC& a) { // 参考 : https://speakerdeck.com/tatyam_prime/monge-noshou-yin-shu // verify : https://judge.yosupo.jp/problem/min_plus_convolution_convex_arbitrary //【方法】 // lsb の大きい行から順に最小値の位置を調べていく. // 1 つ lsb の大きい行の結果を参照することにより調べるべき範囲を各回 O(w) に制限できる. vi j_min(h); // di : 行を調べる間隔 / 2(最大の 2 冪から始めて半分ずつにしていく) for (int di = 1 << msb(h); di > 0; di >>= 1) { // i : 調べる行番号(1-indexed) // 2 di ずつ増加させるので lsb は変化しない. for (int i = di; i <= h; i += di << 1) { int jL = (i - di > 0 ? j_min[i - di - 1] : 0); int jR = (i + di <= h ? j_min[i + di - 1] : w - 1); ll a_min = 2 * INFL + 10; repi(j, jL, jR) if (chmin<ll>(a_min, a(i - 1, j))) j_min[i - 1] = j; } } return j_min; /* a の定義の雛形 auto a = [&](int i, int j) { return 0LL; }; */ } //【Monge DAG 最長路(長さごと)】O(n^2 (log n)^2) /* * 重み付き DAG G を * 頂点集合が [0..n] * 辺 s→t(s<t)の重みが n+1 次狭義上三角 Monge 行列の成分 sc(s,t) * と定める.各 k∈[0..n], i∈[0..n] について, * 頂点 0 から i への長さ k のパスの重みの最大値を格納した二次元リストを返す. * * 利用:【monotone minima】 */ template <class T> vector<vector<T>> monge_DAG_highest_score_path(int n, const vector<vector<T>>& sc) { //【方法】 // dp[k][i] : 頂点 0 から i までの長さ k のパスの重みの最大値 // と定めると,遷移は // dp[k+1][t] = MAX_s∈[0..t) (dp[k][s] + sc(s,t)) // となる.これは max-plus 代数における行列ベクトル積として // dp[k+1] = dp[k] * c // と表される. // // k を固定する. // sc は上三角 Monge なのでその第 t 列に dp[k][t] を加えた行列も上三角 Monge である. // さらに上三角部分を矩形に分割したそれぞれは Monge である. // よって各矩形領域について monotone minima で列最大値を求めることができ, // その結果を統合することで dp[k+1] が得られる. //【注意】 // 上三角のまま列最大値を求めようとしても無効値が邪魔をして失敗する. // dp[k][i] : 頂点 0 から i までの長さ k のパスの重みの最大値 vector<vector<T>> dp(n + 1, vector<T>(n + 1, -T(INFL))); dp[0][0] = 0; // rects_sml : 上三角部分を矩形に分割したときの小ブロック(はみ出しあり) vector<pii> rects_sml; // rects_lrg : 上三角部分を矩形に分割したときの大ブロック vector<tuple<int, int, int, int>> rects_lrg; // {(i,j) | l≦i<j<r} を矩形に分割する. function<void(int, int)> rf = [&](int l, int r) { // 小さくなったらはみ出しも許して打ち切って記録する. if (r - l <= 10) { rects_sml.emplace_back(l, r); return; } int m = (l + r) / 2; rects_lrg.emplace_back(l, m, m, r); rf(l, m); rf(m, r); }; rf(0, n + 1); rep(k, n) { // c の上三角部分を分割した各小ブロック c[i1..i2)[j1..j2) について処理を行う. for (auto [l, r] : rects_sml) { // 矩形が小さいときは素朴に処理する. repi(i, l, r - 1) repi(j, i + 1, r - 1) { chmax(dp[k + 1][j], dp[k][i] + sc[i][j]); } } // c の上三角部分を分割した各大ブロック c[i1..i2)[j1..j2) について処理を行う. for (auto [i1, i2, j1, j2] : rects_lrg) { int h = i2 - i1; int w = j2 - j1; // sc のブロックは Monge なので,左右反転 & -1倍 & 転置しても Monge である. // これの行最小値を求めれば,元のブロックの列最大値(逆順)が求まる. auto A = [&](int j, int i) { return -(sc[i1 + i][j2 - 1 - j] + dp[k][i1 + i]); }; auto i_min = monotone_minima(w, h, A); // 注目ブロックからの影響を反映する. rep(j, w) chmax(dp[k + 1][j2 - 1 - j], -A(j, i_min[j])); } } return dp; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; cin >> n; vi p(n); cin >> p; vvi M(n + 1, vi(n + 1)); rep(i, n) { vi a(p.begin() + i, p.end()); auto b = inversion_number_cc(a); repi(j, i + 1, n) M[i][j] = (int)b[j - (i + 1)]; } vl res(n, M[0][n]); auto sc = monge_DAG_highest_score_path(n, M); rep(i, n) res[i] -= sc[i + 1][n]; rep(i, n) cout << res[i] << "\n"; }