結果
問題 | No.2883 K-powered Sum of Fibonacci |
ユーザー | 👑 binap |
提出日時 | 2024-09-25 04:36:20 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 3,000 ms |
コード長 | 4,869 bytes |
コンパイル時間 | 4,723 ms |
コンパイル使用メモリ | 270,408 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-25 04:36:27 |
合計ジャッジ時間 | 6,235 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,812 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,948 KB |
testcase_17 | AC | 3 ms
6,940 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | AC | 3 ms
6,944 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 2 ms
6,944 KB |
testcase_23 | AC | 2 ms
6,944 KB |
testcase_24 | AC | 2 ms
6,944 KB |
testcase_25 | AC | 2 ms
6,940 KB |
testcase_26 | AC | 2 ms
6,944 KB |
testcase_27 | AC | 2 ms
6,940 KB |
testcase_28 | AC | 3 ms
6,944 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | AC | 2 ms
6,944 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | AC | 2 ms
6,944 KB |
testcase_33 | AC | 2 ms
6,940 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 2 ms
6,944 KB |
testcase_36 | AC | 2 ms
6,940 KB |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | AC | 2 ms
6,940 KB |
testcase_39 | AC | 2 ms
6,940 KB |
testcase_40 | AC | 2 ms
6,944 KB |
testcase_41 | AC | 2 ms
6,944 KB |
testcase_42 | AC | 2 ms
6,940 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> #define rep(i,n) for(int i=0;i<n;i++) using namespace std; using namespace atcoder; typedef long long ll; typedef vector<int> vi; typedef vector<long long> vl; typedef vector<vector<int>> vvi; typedef vector<vector<long long>> vvl; typedef long double ld; typedef pair<int, int> P; template <int m> ostream& operator<<(ostream& os, const static_modint<m>& a) {os << a.val(); return os;} template <int m> ostream& operator<<(ostream& os, const dynamic_modint<m>& a) {os << a.val(); return os;} template <int m> istream& operator>>(istream& is, static_modint<m>& a) {long long x; is >> x; a = x; return is;} template <int m> istream& operator>>(istream& is, dynamic_modint<m>& a) {long long x; is >> x; a = x; return is;} template<typename T> istream& operator>>(istream& is, vector<T>& v){int n = v.size(); assert(n > 0); rep(i, n) is >> v[i]; return is;} template<typename U, typename T> ostream& operator<<(ostream& os, const pair<U, T>& p){os << p.first << ' ' << p.second; return os;} template<typename T> ostream& operator<<(ostream& os, const vector<T>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : " "); return os;} template<typename T> ostream& operator<<(ostream& os, const vector<vector<T>>& v){int n = v.size(); rep(i, n) os << v[i] << (i == n - 1 ? "\n" : ""); return os;} template<typename T> ostream& operator<<(ostream& os, const set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;} template<typename T> ostream& operator<<(ostream& os, const unordered_set<T>& se){for(T x : se) os << x << " "; os << "\n"; return os;} template<typename S, auto op, auto e> ostream& operator<<(ostream& os, const atcoder::segtree<S, op, e>& seg){int n = seg.max_right(0, [](S){return true;}); rep(i, n) os << seg.get(i) << (i == n - 1 ? "\n" : " "); return os;} template<typename S, auto op, auto e, typename F, auto mapping, auto composition, auto id> ostream& operator<<(ostream& os, const atcoder::lazy_segtree<S, op, e, F, mapping, composition, id>& seg){int n = seg.max_right(0, [](S){return true;}); rep(i, n) os << seg.get(i) << (i == n - 1 ? "\n" : " "); return os;} template<typename T> void chmin(T& a, T b){a = min(a, b);} template<typename T> void chmax(T& a, T b){a = max(a, b);} using mint = modint998244353; // combination mod prime // https://youtu.be/8uowVvQ_-Mo?t=6002 // https://youtu.be/Tgd_zLfRZOQ?t=9928 struct modinv { int n; vector<mint> d; modinv(): n(2), d({0,1}) {} mint operator()(int i) { while (n <= i) d.push_back(-d[mint::mod()%n]*(mint::mod()/n)), ++n; return d[i]; } mint operator[](int i) const { return d[i];} } invs; struct modfact { int n; vector<mint> d; modfact(): n(2), d({1,1}) {} mint operator()(int i) { while (n <= i) d.push_back(d.back()*n), ++n; return d[i]; } mint operator[](int i) const { return d[i];} } facts; struct modfactinv { int n; vector<mint> d; modfactinv(): n(2), d({1,1}) {} mint operator()(int i) { while (n <= i) d.push_back(d.back()*invs(n)), ++n; return d[i]; } mint operator[](int i) const { return d[i];} } ifacts; mint comb(int n, int k) { if (n < k || k < 0) return 0; return facts(n)*ifacts(k)*ifacts(n-k); } mint c = 5; template<typename mint> struct Ring{ mint p, q; Ring(mint p = 0, mint q = 0) : p(p), q(q) {} bool operator==(const Ring & r) const{return p == r.p && q == r.q;} bool operator!=(const Ring & r) const{return p != r.p || q != r.q;} Ring operator+(const Ring &r) const { return Ring(*this) += r; } Ring operator-(const Ring &r) const { return Ring(*this) -= r; } Ring operator*(const Ring &r) const { return Ring(*this) *= r; } Ring operator/(const Ring &r) const { return Ring(*this) /= r; } Ring &operator+=(const Ring &r) { return *this = Ring(p + r.p, q + r.q); } Ring &operator-=(const Ring &r) { return *this = Ring(p - r.p, q - r.q); } Ring &operator*=(const Ring &r) { return *this = Ring(p * r.p + c * q * r.q, p * r.q + q * r.p); } Ring &operator/=(const Ring &r) { *this *= r.inv(); return *this; } Ring inv() const{ Ring res(p / (p * p - c * q * q), -q / (p * p - c * q * q)); return res; } Ring pow(long long n) const { assert(0 <= n); Ring x = *this, r(1, 0); while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } }; template<typename T> ostream& operator<<(ostream& os, const Ring<T>& r){os << r.p << ':' << r.q; return os;} using R = Ring<mint>; int main(){ long long n; int k; cin >> n >> k; R sum(0, 0); mint half = mint(1) / 2; for(int i = 0; i <= k; i++){ R v = R(half, half).pow(i) * R(half, -half).pow(k - i); if(v == R(1, 0)){ sum += R(n, 0) * mint(-1).pow(k - i) * comb(k, i); }else{ sum += (R(1, 0) - v.pow(n)) / (R(1, 0) - v) * v * mint(-1).pow(k - i) * comb(k, i); } } sum /= R(0, 1).pow(k); cout << sum.p << "\n"; return 0; }