結果
問題 | No.186 中華風 (Easy) |
ユーザー | eQe |
提出日時 | 2024-09-26 22:05:44 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,567 bytes |
コンパイル時間 | 6,405 ms |
コンパイル使用メモリ | 335,080 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-26 22:05:54 |
合計ジャッジ時間 | 7,133 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | WA | - |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 1 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> namespace my{ void main(); void solve(); } int main(){my::main();} namespace my{ #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define VV(n,...) vec<ll>__VA_ARGS__;setsize({n},__VA_ARGS__);vin(__VA_ARGS__) #define FO(n) for(ll ij=0;ij<n;++ij) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) using namespace std; using ll=long long; using ull=unsigned long long; using ulll=__uint128_t;ostream&operator<<(ostream&o,const ulll&x){return(x<10?o:o<<x/10)<<ll(x%10);} using lll=__int128_t;ostream&operator<<(ostream&o,const lll&x){return o<<string(x<0,'-')<<ulll(x>0?x:-x);} constexpr char nl=10; constexpr char sp=32; auto range(bool s,ll a,ll b=9e18,ll c=1){if(b==9e18)b=a,(s?b:a)=0;return tuple{a-s,b,c};} ll rand(ll l=9e18,ll r=9e18){static ull a=495;a^=a<<7,a^=a>>9;return r!=9e18?a%(r-l)+l:l!=9e18?a%l:a;} lll pw(lll x,lll n,ll m=0){assert(n>=0);lll r=1;while(n)n&1?r*=x:r,x*=x,m?r%=m,x%=m:r,n>>=1;return r;} template<class A,class B>struct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} pair(std::pair<A,B>p):a(p.first),b(p.second){} bool operator==(const pair&p)const{return a==p.a&&b==p.b;} auto operator<=>(const pair&p)const{return a!=p.a?a<=>p.a:b<=>p.b;} friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<sp<<p.b;} }; template<class F=less<>>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;} template<class T,class U>istream&operator>>(istream&i,pair<T,U>&p){return i>>p.first>>p.second;} template<class T,class U>ostream&operator<<(ostream&o,const pair<T,U>&p){return o<<p.first<<sp<<p.second;} template<class T,class U>ostream&operator<<(ostream&o,const unordered_map<T,U>&m){fe(m,e)o<<e.first<<sp<<e.second<<nl;return o;} template<size_t n>ostream&operator<<(ostream&o,const bitset<n>&b){fo(i,n)o<<b[i];return o;} template<class V>concept isv=is_base_of_v<vector<typename V::value_type>,V>; template<class T>struct core_type{using type=T;}; template<isv V>struct core_type<V>{using type=typename core_type<typename V::value_type>::type;}; template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;} template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),isv<V>?nl:sp);return o;} template<class V>struct vec:vector<V>{ using vector<V>::vector; vec(const vector<V>&v){fe(v,e)this->eb(e);} template<size_t n>vec(const bitset<n>&a){fo(i,n)this->eb(a[i]);} vec&operator+=(const vec&u){vec&v=*this;fo(i,v.size())v[i]+=u[i];return v;} vec&operator-=(const vec&u){vec&v=*this;fo(i,v.size())v[i]-=u[i];return v;} vec&operator^=(const vec&u){fe(u,e)this->eb(e);return*this;} vec operator+(const vec&u)const{return vec(*this)+=u;} vec operator-(const vec&u)const{return vec(*this)-=u;} vec operator^(const vec&u)const{return vec(*this)^=u;} vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;} }; template<class T=ll,size_t n,size_t i=0>auto make_vec(const ll(&s)[n],T x={}){if constexpr(n==i+1)return vec<T>(s[i],x);else{auto X=make_vec<T,n,i+1>(s,x);return vec<decltype(X)>(s[i],X);}} template<ll n,class...A>void setsize(const ll(&l)[n],A&...a){((a= make_vec(l,typename core_type<A>::type())),...);} void io(){cin.tie(0)->sync_with_stdio(0);cout<<fixed<<setprecision(15);cerr<<nl;} void lin(auto&...a){(cin>>...>>a);} void vin(auto&...a){fo(i,(a.size()&...))(cin>>...>>a[i]);} template<char c=sp>void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,c)),...);cout<<nl;} template<class T,class U=T>auto rle(const vec<T>&a){vec<pair<T,U>>r;fe(a,e)r.size()&&e==r.back().a?++r.back().b:r.eb(e,1).b;return r;} template<class T,class U=T>auto rce(vec<T>a){return rle<T,U>(sort(a));} struct montgomery64{ using i64=ll; using u64=ull; using u128=__uint128_t; static inline u64 m=998244353; static inline u64 miv; static inline u64 n2; static void set_mod(u64 m){ assert(m<(1ULL<<63)); assert(m&1); montgomery64::m=m; n2=-u128(m)%m; miv=m; fo(5)miv*=2-m*miv; assert(m*miv==1); } static u64 mod(){ return m; } u64 a; montgomery64(const i64&a=0):a(reduce((u128)(a%(i64)m+m)*n2)){} static u64 reduce(const u128&a){ u128 r=(a+u128(u64(a)*-miv)*m)>>64; return r>=m?r-m:r; } auto&operator+=(const montgomery64&b){if((a+=b.a)>=m)a-=m;return*this;} auto&operator-=(const montgomery64&b){if(i64(a-=b.a)<0)a+=m;return*this;} auto&operator*=(const montgomery64&b){a=reduce(u128(a)*b.a);return*this;} auto&operator/=(const montgomery64&b){*this*=b.inv();return*this;} auto operator+(const montgomery64&b)const{return montgomery64(*this)+=b;} auto operator-(const montgomery64&b)const{return montgomery64(*this)-=b;} auto operator*(const montgomery64&b)const{return montgomery64(*this)*=b;} auto operator/(const montgomery64&b)const{return montgomery64(*this)/=b;} bool operator==(const montgomery64&b)const{return a==b.a;} bool operator!=(const montgomery64&b)const{return a!=b.a;} auto operator-()const{return montgomery64()-montgomery64(*this);} montgomery64 pow(u128 n)const{ montgomery64 r(1),x(*this); while(n){ if(n&1)r*=x; x*=x; n>>=1; } return r; } montgomery64 inv()const{ u64 a=this->a,b=m,u=1,v=0; while(b)u-=a/b*v,swap(u,v),a-=a/b*b,swap(a,b); return u; } u64 val()const{ return reduce(a); } friend istream&operator>>(istream&i,montgomery64&b){ ll t;i>>t;b=t; return i; } friend ostream&operator<<(ostream&o,const montgomery64&b){ return o<<b.val(); } }; template<class mont>bool miller_rabin(ll n,vec<ll>as){ ll d=n-1; while(~d&1)d>>=1; if(mont::mod()!=n)mont::set_mod(n); mont one=1,minus_one=n-1; fe(as,a){ if(a%n==0)continue; ll t=d; mont y=mont(a).pow(t); while(t!=n-1&&y!=one&&y!=minus_one)y*=y,t<<=1; if(y!=minus_one&&~t&1)return 0; } return 1; } bool is_prime(ll n){ if(~n&1)return n==2; if(n<=1)return 0; if(n<4759123141LL)return miller_rabin<montgomery64>(n,{2,7,61}); return miller_rabin<montgomery64>(n,{2,325,9375,28178,450775,9780504,1795265022}); } template<class mont>ll pollard_rho(ll n){ if(~n&1)return 2; if(is_prime(n))return n; if(mont::mod()!=n)mont::set_mod(n); mont R,one=1; auto f=[&](mont x){return x*x+R;}; while(1){ mont x,y,ys,q=one; R=rand(2,n),y=rand(2,n); ll g=1; constexpr ll m=128; for(ll r=1;g==1;r<<=1){ x=y; fo(r)y=f(y); for(ll k=0;g==1&&k<r;k+=m){ ys=y; for(ll i=0;i<m&&i<r-k;++i)q*=x-(y=f(y)); g=std::gcd(q.val(),n); } } if(g==n)do g=std::gcd((x-(ys=f(ys))).val(),n);while(g==1); if(g!=n)return g; } } vec<ll>inner_factorize(ll n){ if(n<=1)return{}; ll d=pollard_rho<montgomery64>(n); if(d==n)return{d}; return inner_factorize(d)^inner_factorize(n/d); } vec<pair<ll,ll>>factorize(ll n){ return rce(inner_factorize(n)); } template<class T>T mod(T a,T m){ a%=m; return a<0?a+m:a; } template<class T>T gcd(T a,T b){ if(b==0)return a; return gcd(b,a%b); } template<class T>pair<T,T>ax_by_g(T a,T b){ if(b==0)return{1,0}; auto[s,t]=ax_by_g(b,a%b); return{t,s-a/b*t}; } ll inv_mod(ll a,ll m){ assert(gcd(a,m)==1); auto[x,y]=ax_by_g(a,m); return mod(x,m); } template<class T>T chinese_remainder_theorem_coprime(const vec<T>&a,const vec<T>&m,T M=-1){ ll K=a.size(); vec<T>t(K),S(K),P(K,1); T SM=0,PM=1; fo(i,K){ t[i]=mod((a[i]-S[i])*inv_mod(P[i],m[i]),m[i]); fo(j,i+1,K){ (S[j]+=t[i]*P[i]%m[j])%=m[j]; (P[j]*=m[i])%=m[j]; } if(M==-1){ SM+=t[i]*P[i]; PM*=m[i]; }else{ (SM+=t[i]*P[i]%M)%=M; (PM*=m[i])%=M; } } return SM; } template<class T>T chinese_remainder_theorem(const vec<T>&a,const vec<T>&m,T M=-1){ ll K=a.size(); fo(i,K)fo(j,i+1,K)if((a[i]-a[j])%gcd(m[i],m[j]))return-1; unordered_map<ll,pair<ll,ll>>mem; fo(i,K){ auto primes=factorize(m[i]); fe(primes,p,b)if(!mem.count(p)||mem[p].b<b)mem[p]={a[i],b}; } vec<T>pa,pm; fe(mem,p,v){ pa.eb(v.a); pm.eb(pw(p,v.b)); } return chinese_remainder_theorem_coprime(pa,pm,M); } void main(){io();ll T=1;fo(T)solve();} void solve(){ VV(3,a,m); ll x=chinese_remainder_theorem(a,m); pp(x?x:lcm(m[0],lcm(m[1],m[2]))); }}