結果

問題 No.713 素数の和
ユーザー miscalc
提出日時 2024-09-27 12:17:37
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 47,063 bytes
コンパイル時間 4,273 ms
コンパイル使用メモリ 281,044 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-27 12:17:43
合計ジャッジ時間 4,509 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 6
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
//*
#define INCLUDE_MODINT
//*/
#ifdef INCLUDE_MODINT
#include <atcoder/modint>
using namespace atcoder;
using mint = modint998244353;
// using mint = modint1000000007;
// using mint = modint;
#endif
namespace mytemplate
{
using ll = long long;
using dbl = double;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pll = pair<ll, ll>;
using tlll = tuple<ll, ll, ll>;
using tllll = tuple<ll, ll, ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vector<T>>;
template <class T> using vvvc = vector<vector<vector<T>>>;
using vb = vc<bool>;
using vl = vc<ll>;
using vpll = vc<pll>;
using vtlll = vc<tlll>;
using vtllll = vc<tllll>;
using vstr = vc<string>;
using vvb = vvc<bool>;
using vvl = vvc<ll>;
#ifdef __SIZEOF_INT128__
using i128 = __int128_t;
i128 stoi128(string s) { i128 res = 0; if (s.front() == '-') { for (int i = 1; i < (int)s.size(); i++) res = 10 * res + s[i] - '0'; res = -res;
        } else { for (auto c : s) res = 10 * res + c - '0'; } return res; }
string i128tos(i128 x) { string sign = "", res = ""; if (x < 0) x = -x, sign = "-"; while (x > 0) { res += '0' + x % 10; x /= 10; } reverse(res
        .begin(), res.end()); if (res == "") return "0"; return sign + res; }
istream &operator>>(istream &is, i128 &a) { string s; is >> s; a = stoi128(s); return is; }
ostream &operator<<(ostream &os, const i128 &a) { os << i128tos(a); return os; }
#endif
#define cauto const auto
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(i, n) for (ll i = 0, nnnnn = ll(n); i < nnnnn; i++)
#define rep2(i, l, r) for (ll i = ll(l), rrrrr = ll(r); i < rrrrr; i++)
#define rep3(i, l, r, d) for (ll i = ll(l), rrrrr = ll(r), ddddd = ll(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d)
#define rep(...) overload4(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)
#define repi1(i, n) for (int i = 0, nnnnn = int(n); i < nnnnn; i++)
#define repi2(i, l, r) for (int i = int(l), rrrrr = int(r); i < rrrrr; i++)
#define repi3(i, l, r, d) for (int i = int(l), rrrrr = int(r), ddddd = int(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d)
#define repi(...) overload4(__VA_ARGS__, repi3, repi2, repi1)(__VA_ARGS__)
#define ALL(a) (a).begin(), (a).end()
const ll INF = 4'000'000'000'000'000'037;
bool chmin(auto &a, const auto &b) { return a > b ? a = b, true : false; }
bool chmax(auto &a, const auto &b) { return a < b ? a = b, true : false; }
template <class T1 = ll> T1 safemod(auto a, auto m) { T1 res = a % m; if (res < 0) res += m; return res; }
template <class T1 = ll> T1 divfloor(auto a, auto b) { if (b < 0) a = -a, b = -b; return (a - safemod(a, b)) / b; }
template <class T1 = ll> T1 divceil(auto a, auto b) { if (b < 0) a = -a, b = -b; return divfloor(a + b - 1, b); }
template <class T1 = ll> T1 ipow(auto a, auto b) { if (a == 0) return b == 0 ? 1 : 0; if (a == 1) return a; if (a == -1) return b & 1 ? -1 : 1; ll
      res = 1; rep(_, b) res *= a; return res; }
template <class T1 = ll> T1 mul_limited(auto a, auto b, T1 m = INF) { return b == 0 ? 0 : a > m / b ? m : a * b; }
template <class T1 = ll> T1 pow_limited(auto a, auto b, T1 m = INF) { if (a == 0) return b == 0 ? 1 : 0; if (a == 1) return a; ll res = 1; rep(_,
      b) { if (res > m / a) return m; res *= a; } return res; }
template <class T = ll>
constexpr T iroot(cauto &a, cauto &k)
{
assert(a >= 0 && k >= 1);
if (a <= 1 || k == 1)
return a;
if (k == 2)
return sqrtl(a);
auto isok = [&](T x) -> bool
{
if (x == 0)
return true;
T res = 1;
for (T k2 = k;;)
{
if (k2 & 1)
{
if (res > T(a) / x)
return false;
res *= x;
}
k2 >>= 1;
if (k2 == 0)
break;
if (x > T(a) / x)
return false;
x *= x;
}
return res <= T(a);
};
T ok = pow(a, 1.0 / k);
while (!isok(ok))
ok--;
while (ok < numeric_limits<T>::max() && isok(ok + 1))
ok++;
return ok;
}
template <class T1 = ll> vector<T1> b_ary(T1 x, int b) { vector<T1> a; while (x > 0) { a.emplace_back(x % b); x /= b; } reverse(a.begin(), a.end
      ()); return a; }
template <class T1 = ll> vector<T1> b_ary(T1 x, int b, int n) { vector<T1> a(n); rep(i, n) { a[i] = x % b; x /= b; } reverse(a.begin(), a.end());
      return a; }
template <class T1 = ll> string b_ary_str(T1 x, int b) { auto a = b_ary(x, b); string s = ""; for (auto &&ai : a) s += (ai < 10 ? '0' + ai : 'A' +
      (ai - 10)); return s; }
template <class T1 = ll> string b_ary_str(T1 x, int b, int n) { auto a = b_ary(x, b, n); string s = ""; for (auto &&ai : a) s += (ai < 10 ? '0' +
      ai : 'A' + (ai - 10)); return s; }
template <class T>
vector<vector<T>> iprod(const vector<T> &a)
{
vector<vector<T>> res;
vector<T> tmp(a.size());
auto dfs = [&](auto self, int i)
{
if (i == (int)a.size())
{
res.emplace_back(tmp);
return;
}
rep(j, a[i])
{
tmp[i] = j;
self(self, i + 1);
}
};
dfs(dfs, 0);
return res;
}
template <class T = ll> struct max_op { T operator()(const T &a, const T &b) const { return max(a, b); } };
template <class T = ll> struct min_op { T operator()(const T &a, const T &b) const { return min(a, b); } };
template <class T, const T val> struct const_fn { T operator()() const { return val; } };
using max_e = const_fn<ll, -INF>;
using min_e = const_fn<ll, INF>;
using zero_fn = const_fn<ll, 0LL>;
template <class T = ll> vector<T> digitvec(const string &s) { int n = s.size(); vector<T> a(n); rep(i, n) a[i] = s[i] - '0'; return a; }
template <class T, size_t d, size_t i = 0> auto make_vec(const auto (&sz)[d], const T &init) { if constexpr (i < d) return vector(sz[i], make_vec
      <T, d, i + 1>(sz, init)); else return init; }
template <class T = ll> vector<T> permid(int n, int base_index = 0) { vector<T> p(n); rep(i, n) p[i] = i + base_index; return p; }
template <class T = ll> vector<T> perminv(const vector<T> &p) { vector<T> q(p.size()); rep(i, p.size()) q[p[i]] = i; return q; }
template <class T = ll> vector<T> combid(int n, int k) { vector<T> p(n, 0); fill(p.rbegin(), p.rbegin() + k, 1); return p; }
template <class F> auto gen_vec(int n, const F &f) { using T = decltype(f(0)); vector<T> res(n); rep(i, n) res[i] = f(i); return res; }
// res[i] = op[0, i) for 0 <= i < n+1
template <class T, class F = decltype(plus<>())> vector<T> cuml(vector<T> v, const F &op = plus<>(), const T &e = 0) { v.emplace_back(e);
      exclusive_scan(v.begin(), v.end(), v.begin(), e, op); return v; }
// res[i] = op[i, n) for 0 <= i < n+1
template <class T, class F = decltype(plus<>())> vector<T> cumr(vector<T> v, const F &op = plus<>(), const T &e = 0) { v.insert(v.begin(), e);
      exclusive_scan(v.rbegin(), v.rend(), v.rbegin(), e, op); return v; }
// res[i] = v[i] - v[i-1] for 0 <= i < n+1
template <class T> vector<T> adjd(vector<T> v) { v.emplace_back(0); adjacent_difference(v.begin(), v.end(), v.begin()); return v; }
template <class T> vector<T> cumlmax(const vector<T> &v) { return cuml(v, max_op<T>(), max_e()()); }
template <class T> vector<T> cumrmax(const vector<T> &v) { return cumr(v, max_op<T>(), max_e()()); }
template <class T> vector<T> cumlmin(const vector<T> &v) { return cuml(v, min_op<T>(), min_e()()); }
template <class T> vector<T> cumrmin(const vector<T> &v) { return cumr(v, min_op<T>(), min_e()()); }
template <class T> vector<T> sorted(vector<T> v) { sort(v.begin(), v.end()); return v; }
template <class T> vector<T> reversed(const vector<T> &v) { return {v.rbegin(), v.rend()}; }
template <class T> void unique(vector<T> &v) { v.erase(unique(v.begin(), v.end()), v.end()); }
template <class T> vector<T> uniqued(vector<T> v) { v.erase(unique(v.begin(), v.end()), v.end()); return v; }
template <class T> void sortunique(vector<T> &v) { sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); }
template <class T> vector<T> sortuniqued(vector<T> v) { sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); return v; }
template <class T> void rotate(vector<T> &v, int k) { rotate(v.begin(), v.begin() + k, v.end()); }
template <class T> vector<T> rotated(vector<T> v, int k) { rotate(v.begin(), v.begin() + k, v.end()); return v; }
string sorted(string s) { sort(s.begin(), s.end()); return s; }
string reversed(const string &s) { return {s.rbegin(), s.rend()}; }
void unique(string &s) { s.erase(unique(s.begin(), s.end()), s.end()); }
string uniqued(string s) { s.erase(unique(s.begin(), s.end()), s.end()); return s; }
void sortunique(string &s) { sort(s.begin(), s.end()); s.erase(unique(s.begin(), s.end()), s.end()); }
string sortuniqued(string s) { sort(s.begin(), s.end()); s.erase(unique(s.begin(), s.end()), s.end()); return s; }
void rotate(string &s, int k) { rotate(s.begin(), s.begin() + k, s.end()); }
string rotated(string s, int k) { rotate(s.begin(), s.begin() + k, s.end()); return s; }
template <class T> vector<vector<T>> top(const vector<vector<T>> &a) { if (a.empty()) return {}; const size_t n = a.size(), m = a[0].size();
      vector<vector<T>> b(m, vector<T>(n)); for (size_t i = 0; i < n; i++) for (size_t j = 0; j < m; j++) b[j][i] = a[i].at(j); return b; }
vstr top(const vstr &a) { if (a.empty()) return {}; const size_t n = a.size(), m = a[0].size(); vstr b(m, string(n, 0)); for (size_t i = 0; i < n;
      i++) for (size_t j = 0; j < m; j++) b[j][i] = a[i].at(j); return b; }
template <class T> vector<vector<T>> rot90(const vector<vector<T>> &a) { if (a.empty()) return {}; const size_t n = a.size(), m = a[0].size();
      vector<vector<T>> b(m, vector<T>(n)); for (size_t i = 0; i < n; i++) for (size_t j = 0; j < m; j++) b[j][n - 1 - i] = a[i][j]; return b; }
vstr rot90(const vstr &a) { if (a.empty()) return {}; const size_t n = a.size(), m = a[0].size(); vstr b(m, string(n, 0)); for (size_t i = 0; i <
      n; i++) for (size_t j = 0; j < m; j++) b[j][n - 1 - i] = a[i][j]; return b; }
#if __cplusplus < 202002L
ull bit_ceil(ull x) { ull y = 1; while (y < x) y <<= 1; return y; }
ull bit_floor(ull x) { ull y = 1; while (y <= x) y <<= 1; return y >> 1; }
ull bit_width(ull x) { ull y = 1, z = 0; while (y <= x) y <<= 1, z++; return z; }
ull countr_zero(ull x) { return __builtin_ctzll(x); }
ull popcount(ull x) { return __builtin_popcountll(x); }
ull has_single_bit(ull x) { return popcount(x) == 1; }
#endif
ull lsb_pos(ull x) { assert(x != 0); return countr_zero(x); }
ull msb_pos(ull x) { assert(x != 0); return bit_width(x) - 1; }
ull lsb_mask(ull x) { assert(x != 0); return x & -x; }
ull msb_mask(ull x) { assert(x != 0); return bit_floor(x); }
bool btest(ull x, uint k) { return (x >> k) & 1; }
template <class T> void bset(T &x, uint k, bool b = 1) { b ? x |= (1ULL << k) : x &= ~(1ULL << k); }
template <class T> void bflip(T &x, uint k) { x ^= (1ULL << k); }
bool bsubset(ull x, ull y) { return (x & y) == x; }
template <class T> vector<pair<T, T>> bsubsets(T x) { vector<pair<T, T>> res; for (T y = x; y > 0; y = (y - 1) & x) res.emplace_back(make_pair(y,
      x & ~y)); res.emplace_back(make_pair(0, x)); return res; }
template <class Tuple, size_t... I> Tuple tuple_add(Tuple &a, const Tuple &b, const index_sequence<I...>) { ((get<I>(a) += get<I>(b)), ...);
      return a; }
template <class Tuple> Tuple operator+=(Tuple &a, const Tuple &b) { return tuple_add(a, b, make_index_sequence<tuple_size_v<Tuple>>{}); }
template <class Tuple> Tuple operator+(Tuple a, const Tuple &b) { return a += b; }
template <class T, class U> void offset(vector<T> &v, U add) { for (auto &vi : v) vi += add; }
template <class T, class U> void offset(vector<vector<T>> &v, U add) { for (auto &vi : v) for (auto &vij : vi) vij += add; }
template <class T, const size_t m> array<vector<T>, m> top(const vector<array<T, m>> &a) { const size_t n = a.size(); array<vector<T>, m> b; b
      .fill(vector<T>(n)); for (size_t i = 0; i < n; i++) for (size_t j = 0; j < m; j++) b[j][i] = a[i][j]; return b; }
template <class T, const size_t n> vector<array<T, n>> top(const array<vector<T>, n> &a) { if (a.empty()) return {}; const size_t m = a[0].size();
      vector<array<T, n>> b(m); for (size_t i = 0; i < n; i++) for (size_t j = 0; j < m; j++) b[j][i] = a[i].at(j); return b; }
template <class T, class U> pair<vector<T>, vector<U>> top(const vector<pair<T, U>> &a) { const size_t n = a.size(); vector<T> b(n); vector<U> c(n
      ); for (size_t i = 0; i < n; i++) tie(b[i], c[i]) = a[i]; return make_pair(b, c); }
template <class T, class U> vector<pair<T, U>> top(const pair<vector<T>, vector<U>> &a) { const size_t n = a.first.size(); vector<pair<T, U>> b(n
      ); for (size_t i = 0; i < n; i++) b[i] = make_pair(a.first[i], a.second.at(i)); return b; }
template <class T1, class T2, class T3> tuple<vector<T1>, vector<T2>, vector<T3>> top(const vector<tuple<T1, T2, T3>> &a) { const size_t n = a
      .size(); vector<T1> b(n); vector<T2> c(n); vector<T3> d(n); for (size_t i = 0; i < n; i++) tie(b[i], c[i], d[i]) = a[i]; return make_tuple(b,
      c, d); }
template <class T1, class T2, class T3> vector<tuple<T1, T2, T3>> top(const tuple<vector<T1>, vector<T2>, vector<T3>> &a) { const size_t n = get<0
      >(a).size(); vector<tuple<T1, T2, T3>> b(n); for (size_t i = 0; i < n; i++) b[i] = make_tuple(get<0>(a)[i], get<1>(a).at(i), get<2>(a).at(i));
      return b; }
template <class T1, class T2, class T3, class T4> tuple<vector<T1>, vector<T2>, vector<T3>, vector<T4>> top(const vector<tuple<T1, T2, T3, T4>> &a
      ) { const size_t n = a.size(); vector<T1> b(n); vector<T2> c(n); vector<T3> d(n); vector<T4> e(n); for (size_t i = 0; i < n; i++) tie(b[i],
      c[i], d[i], e[i]) = a[i]; return make_tuple(b, c, d, e); }
template <class T1, class T2, class T3, class T4> vector<tuple<T1, T2, T3, T4>> top(const tuple<vector<T1>, vector<T2>, vector<T3>, vector<T4>> &a
      ) { const size_t n = get<0>(a).size(); vector<tuple<T1, T2, T3, T4>> b(n); for (size_t i = 0; i < n; i++) b[i] = make_tuple(get<0>(a)[i], get
      <1>(a).at(i), get<2>(a).at(i), get<3>(a).at(i)); return b; }
#ifdef INCLUDE_MODINT
using namespace atcoder;
template <class T, internal::is_modint_t<T> * = nullptr> istream &operator>>(istream &is, T &a) { ll v; is >> v; a = v; return is; }
template <class T, internal::is_modint_t<T> * = nullptr> ostream &operator<<(ostream &os, const T &a) { os << a.val(); return os; }
#define MINT(...) mint __VA_ARGS__; INPUT(__VA_ARGS__)
#endif
template <class Tuple, enable_if_t<__is_tuple_like<Tuple>::value == true> * = nullptr> istream &operator>>(istream &is, Tuple &t) { apply([&]
      (auto&... a){ (is >> ... >> a); }, t); return is; }
template <class... T> void INPUT(T&... a) { (cin >> ... >> a); }
template <class T> void INPUTVEC(int n, vector<T> &v) { v.resize(n); rep(i, n) cin >> v[i]; }
template <class T, class... Ts> void INPUTVEC(int n, vector<T>& v, vector<Ts>&... vs) { INPUTVEC(n, v); INPUTVEC(n, vs...); }
template <class T> void INPUTVEC2(int n, int m, vector<vector<T>> &v) { v.assign(n, vector<T>(m)); rep(i, n) rep(j, m) cin >> v[i][j]; }
template <class T, class... Ts> void INPUTVEC2(int n, int m, vector<T>& v, vector<Ts>&... vs) { INPUTVEC2(n, m, v); INPUTVEC2(n, m, vs...); }
#define INT(...) int __VA_ARGS__; INPUT(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; INPUT(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; INPUT(__VA_ARGS__)
#define ARR(T, n, ...) array<T, n> __VA_ARGS__; INPUT(__VA_ARGS__)
#define VEC(T, n, ...) vector<T> __VA_ARGS__; INPUTVEC(n, __VA_ARGS__)
#define VEC2(T, n, m, ...) vector<vector<T>> __VA_ARGS__; INPUTVEC2(n, m, __VA_ARGS__)
template <class T> void PRINT(const T &a) { cout << a << '\n'; }
template <class T, class... Ts> void PRINT(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template <class T> void PRINTVEC(const vector<T> &v) { int n = v.size(); rep(i, n) cout << v[i] << (i == n - 1 ? "" : " "); cout << '\n'; }
template <class T> void PRINTVECT(const vector<T> &v) { for (auto &vi : v) cout << vi << '\n';}
template <class T> void PRINTVEC2(const vector<vector<T>> &v) { for (auto &vi : v) PRINTVEC(vi); }
#define PRINTEXIT(...) do { PRINT(__VA_ARGS__); exit(0); } while (false)
#define PRINTRETURN(...) do { PRINT(__VA_ARGS__); return; } while (false)
}
using namespace mytemplate;
#ifdef LOCAL
#include <cpp-dump.hpp> // https://github.com/philip82148/cpp-dump
namespace cpp_dump::_detail
{
inline string export_var(
const i128 &x, const string &indent, size_t last_line_length,
size_t current_depth, bool fail_on_newline, const export_command &command
) {
return export_var(i128tos(x), indent, last_line_length, current_depth, fail_on_newline, command);
}
#ifdef INCLUDE_MODINT
template <int m>
inline std::string export_var(
const atcoder::static_modint<m> &mint, const std::string &indent, std::size_t last_line_length,
std::size_t current_depth, bool fail_on_newline, const export_command &command
) {
return export_var(mint.val(), indent, last_line_length, current_depth, fail_on_newline, command);
}
template <int m>
inline std::string export_var(
const atcoder::dynamic_modint<m> &mint, const std::string &indent, std::size_t last_line_length,
std::size_t current_depth, bool fail_on_newline, const export_command &command
) {
return export_var(mint.val(), indent, last_line_length, current_depth, fail_on_newline, command);
}
#endif
} // namespace cpp_dump::_detail
#define dump(...) cpp_dump(__VA_ARGS__)
namespace cp = cpp_dump;
CPP_DUMP_SET_OPTION_GLOBAL(log_label_func, cp::log_label::line());
CPP_DUMP_SET_OPTION_GLOBAL(max_iteration_count, 10000);
#else
#define dump(...)
#endif
#define SINGLE_TESTCASE
// #define MULTI_TESTCASE
// #define AOJ_TESTCASE
#define FAST_IO
template <class P>
struct PrimePower
{
P p;
int e;
P pe;
PrimePower() : p(-1), e(-1), pe(-1) {}
PrimePower(P p, int e = 1) : p(p), e(e), pe(ipow(p, e)) {}
PrimePower(P p, int e, P pe) : p(p), e(e), pe(pe) {}
void mulp() { e++, pe *= p; }
void divp() { e--, pe /= p; }
template <class P2>
PrimePower(const PrimePower<P2> &pp) { p = pp.p, e = pp.e, pe = pp.pe; }
};
#ifdef LOCAL
CPP_DUMP_DEFINE_EXPORT_OBJECT(PrimePower<int>, p, e, pe);
CPP_DUMP_DEFINE_EXPORT_OBJECT(PrimePower<ll>, p, e, pe);
#endif
struct LinearSieve
{
private:
static vector<int> prime_id;
public:
static int n;
static vector<PrimePower<int>> _lpf;
static vector<int> primes;
static void extend(int _n)
{
if (_n <= n)
return;
n = max(_n, 2 * n);
prime_id.resize(n + 1, 0);
_lpf.resize(n + 1);
for (int d = 2; d <= n; d++)
{
if (_lpf[d].p == -1)
_lpf[d] = PrimePower<int>(d, 1, d), primes.emplace_back(d);
for (int &i = prime_id[d]; i < (int)primes.size(); i++)
{
int p = primes[i];
if (p > n / d || p > _lpf[d].p)
break;
if (_lpf[d].p == p)
_lpf[p * d] = PrimePower<int>(p, _lpf[d].e + 1, _lpf[d].pe * p);
else
_lpf[p * d] = PrimePower<int>(p, 1, p);
}
}
}
static PrimePower<int> lpf(int x)
{
assert(x >= 1 && "LinearSieve::lpf");
extend(x);
return _lpf[x];
}
static bool is_prime(int x)
{
if (x <= 1)
return false;
return lpf(x).p == x;
}
// : O(x ) = O(log x / loglog x)
static vector<PrimePower<int>> factorize(int x)
{
assert(x >= 1 && "LinearSieve::factorize");
extend(x);
vector<PrimePower<int>> res;
while (x > 1)
{
res.emplace_back(_lpf[x]);
x /= _lpf[x].pe;
}
return res;
}
};
vector<int> LinearSieve::prime_id{};
vector<PrimePower<int>> LinearSieve::_lpf{};
int LinearSieve::n{};
vector<int> LinearSieve::primes{};
using sv = LinearSieve;
struct SegmentedSieve
{
// pfs[x - l] x (x )
vector<vector<int>> pfs;
ll l, r;
SegmentedSieve() {}
// : O( ( √r + (r-l) ) loglog r )
SegmentedSieve(ll l, ll r) : l(l), r(r)
{
LinearSieve::extend(sqrtl(r) + 1);
pfs.resize(r - l + 1);
for (const ll p : LinearSieve::primes)
for (ll x = max(2 * p, divceil(l, p) * p); x <= r; x += p)
pfs[x - l].emplace_back(p);
}
bool is_prime(ll x)
{
if (l <= x && x <= r)
return pfs[l - x].empty();
assert(x <= INT32_MAX && "SegmentedSieve::is_prime");
return LinearSieve::is_prime(x);
}
// : O(log x)
vector<PrimePower<ll>> factorize(ll x)
{
if (l <= x && x <= r)
{
vector<PrimePower<ll>> res;
for (const ll p : pfs[x - l])
{
int e = 0;
ll pe = 1;
while (x % p == 0)
x /= p, e++, pe *= p;
res.emplace_back(PrimePower<ll>(p, e, pe));
}
if (x != 1)
res.emplace_back(PrimePower<ll>(x, 1, x));
return res;
}
assert(x <= INT32_MAX && "SegmentedSieve::factorize");
vector<PrimePower<int>> res = LinearSieve::factorize(x);
return vector<PrimePower<ll>>(res.begin(), res.end());
}
};
namespace zeta_mobius_small
{
// ζa(n) = Σ[d | n] a(d)
// a[0]
template <class T>
vector<T> zeta_divisor(const vector<T> &a)
{
const int n = (int)a.size() - 1;
LinearSieve::extend(n);
vector<T> b(a);
for (const int &p : LinearSieve::primes)
{
if (p > n)
break;
for (int i = 1; i * p <= n; i++)
b[i * p] += b[i];
}
return b;
}
// μ ζ
// μa(n) = Σ{d | n} μ(n/d)a(d) cf.
// a[0]
template <class T>
vector<T> mobius_divisor(const vector<T> &a)
{
const int n = (int)a.size() - 1;
LinearSieve::extend(n);
vector<T> b(a);
for (const int &p : LinearSieve::primes)
{
if (p > n)
break;
for (int i = n / p; i >= 1; i--)
b[i * p] -= b[i];
}
return b;
}
// ζ'a(n) = Σ{n | m} a(m)
// a[0]
template <class T>
vector<T> zeta_multiple(const vector<T> &a)
{
const int n = (int)a.size() - 1;
LinearSieve::extend(n);
vector<T> b(a);
for (const int &p : LinearSieve::primes)
{
if (p > n)
break;
for (int i = n / p; i >= 1; i--)
b[i] += b[i * p];
}
return b;
}
// μ' ζ'
// μ'a(n) = Σ{n | m} μ(m/n)g(m)
// a[0]
template <class T>
vector<T> mobius_multiple(const vector<T> &a)
{
const int n = (int)a.size() - 1;
LinearSieve::extend(n);
vector<T> b(a);
for (const int &p : LinearSieve::primes)
{
if (p > n)
break;
for (int i = 1; i * p <= n; i++)
b[i] -= b[i * p];
}
return b;
}
// |a| = |b|
// a[0], b[0]
template <class T>
vector<T> lcm_convolution(const vector<T> &a, const vector<T> &b)
{
assert(a.size() == b.size() && "lcm_convolution");
vector<T> za = zeta_divisor(a), zb = zeta_divisor(b);
vector<T> zc(a.size());
for (int i = 1; i < (int)a.size(); i++)
zc[i] = za[i] * zb[i];
return mobius_divisor(zc);
}
// |a| = |b|
// a[0], b[0]
template <class T>
vector<T> gcd_convolution(const vector<T> &a, const vector<T> &b)
{
assert(a.size() == b.size() && "gcd_convolution");
vector<T> za = zeta_multiple(a), zb = zeta_multiple(b);
vector<T> zc(a.size());
for (int i = 1; i < (int)a.size(); i++)
zc[i] = za[i] * zb[i];
return mobius_multiple(zc);
}
};
using namespace zeta_mobius_small;
namespace multiplicative
{
// : f(1) = 1, f(p1^e1 ... pk^ek) = f(p1)^e1 ... f(pk)^ek
// f(p) O(t) f(1), ..., f(n) O(n + nt/log n)
// f_primepower PrimePower ( f(p) )
template <class T>
vector<T> enumerate_completely_multiplicative(int n, const auto &f_primepower)
{
LinearSieve::extend(n);
vector<T> res(n + 1);
if (n >= 1)
res[1] = 1;
for (int d = 2; d <= n; d++)
{
int p = LinearSieve::_lpf[d].p;
if (d == p)
res[d] = f_primepower(PrimePower<int>(p, 1, p));
else
res[d] = res[p] * res[d / p];
}
return res;
}
// : f(1) = 1, f(p1^e1 ... pk^ek) = f(p1^e1) ... f(pk^ek)
// f(p^e) O(1) f(1), ..., f(n) O(n)
// f_primepower PrimePower
template <class T>
vector<T> enumerate_multiplicative(int n, const auto &f_primepower)
{
LinearSieve::extend(n);
vector<T> res(n + 1);
if (n >= 1)
res[1] = 1;
for (int d = 2; d <= n; d++)
{
const PrimePower<int> &lpf_d = LinearSieve::_lpf[d];
int pe = lpf_d.pe;
if (d == pe)
res[d] = f_primepower(lpf_d);
else
res[d] = res[d / pe] * res[pe];
}
return res;
}
// ------ -----
// : ε(1) = 1, otherwise 0
template <class T, class P = ll>
const auto e_primepower = [](const PrimePower<P> &q) -> T
{ return q.pe == 1 ? 1 : 0; };
// ζ(s): 1(n) = 1
template <class T, class P = ll>
const auto zeta_primepower = [](const PrimePower<P> &q) -> T
{ return 1; };
// ζ(s-1): id(n) = n
template <class T, class P = ll>
const auto id_primepower = [](const PrimePower<P> &q) -> T
{ return q.pe; };
// f(n) = n^k (k >= 0)
// T modint
// 1 n : O(n log k / log n)
template <class T, class P = ll>
const auto pow_primepower = [](ll k)
{
return [&](const PrimePower<P> &q) -> T
{ return T(q.pe).pow(k); };
};
// f(n) = n^{-k} (k >= 0)
// 0
// T modint
// 1 n : O(n log k)
template <class T, class P = ll>
const auto pow_inv_primepower = [](ll k)
{
return [&](const PrimePower<P> &q) -> T
{
if (internal::is_prime_constexpr(T::mod()))
return T(q.pe).pow(safemod(-k, T::mod() - 1));
else
return T::mod() % q.p == 0 ? T(0) : T(q.pe).inv().pow(k);
};
};
// ----- -----
// : μ(s) = 1/ζ(s) = prod_{p} (1-p)
// 0 1 -1
template <class T, class P = ll>
const auto mobius_primepower = [](const PrimePower<P> &q) -> T
{ return q.e == 0 ? 1 : q.e == 1 ? -1 : 0; };
// : σ_0(s) = ζ(s)ζ(s)
template <class T, class P = ll>
const auto divisor_count_primepower = [](const PrimePower<P> &q) -> T
{ return 1 + q.e; };
// : σ_1(s) = ζ(s)ζ(s-1)
template <class T, class P = ll>
const auto divisor_sum_primepower = [](const PrimePower<P> &q) -> T
{ return (q.pe * q.p - 1) / (q.p - 1); };
// k : σ_k(s) = ζ(s)ζ(s-k)
// f(p^e) = 1 + p^k + (p^k)^2 + ... + (p^k)^e
// T modint
// : O(log k + e)
template <class T, class P = ll>
const auto divisor_k_primepower = [](ll k)
{
return [&](const PrimePower<P> &q) -> T
{
T pk = T(q.p).pow(k);
T r = 1, res = 0;
for (int i = 0; i <= q.e; i++)
{
res += r;
r *= pk;
}
return res;
};
};
// (): φ(s) = ζ(s-1)/ζ(s)
// n 1 n
// n * prod_{p}(1 - 1/p)
template <class T, class P = ll>
const auto totient_primepower = [](const PrimePower<P> &q) -> T
{ return q.pe - q.pe / q.p; };
// ----- -----
// : ε(1) = 1, otherwise 0
template <class T>
const auto e_prefix_sum = [](ll n) -> T
{ return 1; };
// ζ(s): 1(n) = 1
template <class T>
const auto zeta_prefix_sum = [](ll n) -> T
{ return n; };
// ζ(s-1): id(n) = n
template <class T>
const auto id_prefix_sum = [](ll n) -> T
{ return n % 2 == 0 ? T(n / 2) * T(n + 1) : T(n) * T((n + 1) / 2); };
};
using namespace multiplicative;
// modint log
template <class T, const bool use_inv = numeric_limits<T>::is_integer>
struct Div
{
T val, inv;
Div() {}
Div(const T &val) : val(val), inv(1 / val) {}
T &divide(T &x) { return use_inv ? x *= inv : x /= val; }
T divided(T x) { return x /= val; }
};
// prefix
// f(1), ..., f(k)
template <class T>
struct DirichletP
{
public:
int k;
vector<T> f;
bool is_multiplicative;
DirichletP() {}
//
DirichletP(const int &k, const auto &f_primepower, const bool &is_completely_multiplicative = false)
: k(k), is_multiplicative(true)
{
if (is_completely_multiplicative)
f = multiplicative::enumerate_completely_multiplicative<T>(k, f_primepower);
else
f = multiplicative::enumerate_multiplicative<T>(k, f_primepower);
}
DirichletP(const vector<T> &f, const bool &is_multiplicative = false)
: k((int)f.size() - 1), f(f), is_multiplicative(is_multiplicative)
{}
private:
static vector<T> prod_arbitrary(const vector<T> &a, const vector<T> &b)
{
assert(a.size() == b.size() && "DirichletP::prod_arbitrary");
const int _k = (int)a.size() - 1;
vector<T> c(_k + 1);
for (int i = 1; i <= _k; i++)
for (int j = 1; i * j <= _k; j++)
c[i * j] += a[i] * b[j];
return c;
};
static vector<T> prod_half_multiplicative(const vector<T> &a, const vector<T> &b)
{
assert(a.size() == b.size() && "DirichletP::prod_half_multiplicative");
const int _k = (int)a.size() - 1;
LinearSieve::extend(_k);
vector<T> c(b);
for (const int &p : LinearSieve::primes)
{
if (p > _k)
break;
for (int i = _k / p; i > 0; i--)
{
int j = i * p;
ll q = p; // q = p^e
int m = i; // j = p^e * m
while (q <= _k)
{
c[j] += a[q] * c[m];
if (m % p != 0)
break;
q *= p, m /= p;
}
}
}
return c;
};
static vector<T> prod_multiplicative(const vector<T> &a, const vector<T> &b)
{
assert(a.size() == b.size() && "DirichletP::prod_multiplicative");
const int _k = (int)a.size() - 1;
auto f_primepower = [&](const PrimePower<ll> &q)
{
T res = 0;
for (int r = q.pe, s = 1; r >= 1; r /= q.p, s *= q.p)
res += a[r] * b[s];
return res;
};
return multiplicative::enumerate_multiplicative<T>(_k, f_primepower);
};
static vector<T> div_multiplicative(const vector<T> &c, const vector<T> &a)
{
assert(a.size() == c.size() && "DirichletP::div_multiplicative");
const int _k = (int)a.size() - 1;
if (_k == 0)
return vector<T>(1);
vector<T> b(_k + 1);
b[1] = 1;
for (const int &p : LinearSieve::primes)
{
for (ll pe = p; pe <= _k; pe *= p)
{
b[pe] = c[pe];
for (int q = 1, r = pe; q < pe; q *= p, r /= p)
b[pe] -= b[q] * a[r];
}
}
return multiplicative::enumerate_multiplicative<T>(_k, [&](const PrimePower<ll> &q) -> T
{ return b[q.pe]; });
}
static vector<T> div_arbitrary(const vector<T> &c, const vector<T> &a)
{
assert(a.size() == c.size() && "DirichletP::div_arbitrary");
const int _k = (int)a.size() - 1;
if (_k == 0)
return vector<T>(1);
assert(a[1] != 0 && "div_arbitrary");
vector<T> b(c.begin(), c.end());
Div<T> div_a1(a[1]);
for (int i = 1; i <= _k; i++)
{
div_a1.divide(b[i]);
for (int j = 2; i * j <= _k; j++)
b[i * j] -= a[j] * b[i];
}
return b;
}
public:
//
// O(k)
// O(k loglog k)
// O(k log k)
DirichletP operator*(const DirichletP<T> &other) const
{
vector<T> res_f;
if (this->is_multiplicative && other.is_multiplicative)
res_f = prod_multiplicative(this->f, other.f);
else if (this->is_multiplicative)
res_f = prod_half_multiplicative(this->f, other.f);
else if (other.is_multiplicative)
res_f = prod_half_multiplicative(other.f, this->f);
else
res_f = prod_arbitrary(this->f, other.f);
bool res_is_multiplicative
= this->is_multiplicative && other.is_multiplicative;
return DirichletP(res_f, res_is_multiplicative);
}
DirichletP &operator*=(const DirichletP<T> &other) { return *this = *this * other; }
//
// O(k), O(k log k)
DirichletP inv() const
{
DirichletP e(k, multiplicative::e_primepower<T>, true);
return e / *this;
}
// c/a
// a, c O(k)
// a O(k loglog k)
// O(k log k)
DirichletP operator/(const DirichletP<T> &other) const
{
vector<T> res_f;
if (this->is_multiplicative && other.is_multiplicative)
res_f = div_multiplicative(this->f, other.f);
else if (other.is_multiplicative)
res_f = prod_half_multiplicative(other.inv().f, this->f);
else
res_f = div_arbitrary(this->f, other.f);
bool res_is_multiplicative
= this->is_multiplicative && other.is_multiplicative;
return DirichletP(res_f, res_is_multiplicative);
}
DirichletP &operator/=(const DirichletP<T> &other) { return *this = *this / other; }
DirichletP pow(ll x) const
{
DirichletP res(k, multiplicative::e_primepower<T>, true);
DirichletP tmp(*this);
while (x > 0)
{
if (x & 1)
res *= tmp;
tmp *= tmp;
x >>= 1;
}
return res;
}
};
// prefix-quotient
// f(1), ..., f(k)
// F(1), ..., F(k) F(⌊n/1⌋), ..., F(⌊n/l⌋)
// d 2 F(⌊(n/j)^{1/d}⌋)
// k >= l ⌊(n/(l+1))^{1/d}⌋ <= k
template <class T, const int d = 1>
struct DirichletPQ
{
public:
DirichletP<T> pre;
ll n;
int l;
vector<T> F, qF;
// F(⌊(n/i)^{1/d}⌋)
T &getqF(ll i)
{
assert(1 <= i && i <= n);
if (i <= l)
return qF[i];
else
return F[iroot(n / i, d)];
}
DirichletPQ() {}
DirichletPQ(const DirichletP<T> &pre, const ll &n, const int &l, const auto &getF)
: pre(pre), n(n), l(l), F(pre.k + 1), qF(l + 1)
{
assert(pre.k >= l && "DirichletPQ");
assert(iroot(n / (l + 1), d) <= pre.k && "DirichletPQ");
for (int i = 1; i <= pre.k; i++)
F[i] = F[i - 1] + pre.f[i];
for (int i = 1; i <= l; i++)
qF[i] = getF(iroot(n / i, d));
}
DirichletPQ(const DirichletP<T> &pre, const ll &n, const vector<T> &qF)
: pre(pre), n(n), l((int)qF.size() - 1), F(pre.k + 1), qF(qF)
{
assert(pre.k >= l && "DirichletPQ");
assert(iroot(n / (l + 1), d) <= pre.k && "DirichletPQ");
for (int i = 1; i <= pre.k; i++)
F[i] = F[i - 1] + pre.f[i];
}
//
// - O(k + √(nl))
// - k = O(n^{2/3}), l = O(n^{1/3})
// - O(k loglog k + √(nl))
// - k = O((n/loglog n)^{2/3}), l = O(n^{1/3}(loglog n)^{2/3})
// - O(k log k + √(nl))
// - k = O((n/log n)^{2/3}), l = O(n^{1/3}(log n)^{2/3})
// d O(k + (nl)^{1/2d}) k = O(n^{2/(2d+1)}), l = O(n^{1/(2d+1)})
DirichletPQ operator*(const DirichletPQ &other) const
{
assert(n == other.n && pre.k == other.pre.k && l == other.l && "DirichletPQ::operator*");
DirichletP<T> res_pre = pre * other.pre;
vector<T> res_qF(l + 1);
for (ll j = 1; j <= l; j++)
{
const int m = iroot(n / j, 2 * d);
for (ll i = 1; i <= m; i++)
res_qF[j] += pre.f[i] * other.getqF(ipow(i, d) * j) + other.pre.f[i] * (getqF(ipow(i, d) * j) - F[m]);
}
return DirichletPQ(res_pre, n, res_qF);
}
DirichletPQ &operator*=(const DirichletPQ &other) { return *this = *this * other; }
//
// - O(k + √(nl))
// - k = O(n^{2/3}), l = O(n^{1/3})
// - O(k loglog k + √(nl))
// - k = O((n/loglog n)^{2/3}), l = O(n^{1/3}(loglog n)^{2/3})
// - O(k log k + √(nl))
// - k = O((n/log n)^{2/3}), l = O(n^{1/3}(log n)^{2/3})
// d O(k + (nl)^{1/2d}) k = O(n^{2/(2d+1)}), l = O(n^{1/(2d+1)})
DirichletPQ operator/(const DirichletPQ &other) const
{
assert(n == other.n && pre.k == other.pre.k && l == other.l && "DirichletPQ::operator/");
if (pre.k == 0)
return DirichletPQ(DirichletP<T>(vector<T>(1)), n, vector<T>(l + 1));
assert(other.pre.f[1] != 0 && "DirichletPQ::operator/");
DirichletPQ res(pre / other.pre, n, qF);
Div<T> div_a1(other.pre.f[1]);
for (ll j = l; j >= 1; j--)
{
const int m = iroot(n / j, 2 * d);
for (ll i = 1; i <= m; i++)
res.qF[j] -= res.pre.f[i] * (other.getqF(ipow(i, d) * j) - other.F[m]);
for (ll i = 2; i <= m; i++)
res.qF[j] -= other.pre.f[i] * res.getqF(ipow(i, d) * j);
div_a1.divide(res.qF[j]);
}
return res;
}
DirichletPQ &operator/=(const DirichletPQ<T> &other) { return *this = *this / other; }
//
DirichletPQ inv() const
{
DirichletPQ e(DirichletP<T>(pre.k, multiplicative::e_primepower<T>, true), n, l, multiplicative::e_prefix_sum<T>);
return e / *this;
}
DirichletPQ pow(ll x) const
{
DirichletPQ res(DirichletP<T>(pre.k, multiplicative::e_primepower<T>, true), n, l, multiplicative::e_prefix_sum<T>);
DirichletPQ tmp(*this);
while (x > 0)
{
if (x & 1)
res *= tmp;
tmp *= tmp;
x >>= 1;
}
return res;
}
};
// c = a * b C(n)
// : O(k + l)
// k = l = ⌊√n⌋ O(√n)
template <class T>
T prodFn(const DirichletPQ<T> &a, const DirichletPQ<T> &b)
{
assert(a.n == b.n && a.pre.k == b.pre.k && a.l == b.l && "prodFn");
T ans = 0;
for (int i = 1; i <= a.l; i++)
ans += a.pre.f[i] * b.getqF(i);
for (int j = 1; j <= a.pre.k; j++)
ans += b.pre.f[j] * (a.getqF(j) - a.F[a.l]);
return ans;
}
// : **** f PQ f(p)
// : f PQ
// : k = l = ⌊√n⌋ O(n^{3/4} / log n)
template <class T>
DirichletPQ<T> lucy_dp(const DirichletPQ<T> &f_pq, const auto &f_primepower)
{
// dp_i(v) := 2 v i f
// i v < i^2 dp_i(v) = dp_{i-1}(v)
// dp_i(v) = dp_{i-1}(v) - f(i) ( dp_{i-1}(⌊v/i⌋) - dp_{i-1}(i-1) )
vector<T> res_qF(f_pq.l + 1);
for (int j = 1; j <= f_pq.l; j++)
res_qF[j] = f_pq.qF[j] - 1;
DirichletPQ<T> res(f_pq.pre, f_pq.n, res_qF);
for (int v = 1; v <= f_pq.pre.k; v++)
res.F[v] -= 1;
for (ll i = 2; i * i <= f_pq.n; i++)
{
// dp_{i-1}
if (!LinearSieve::is_prime(i))
continue;
T fi = f_primepower(PrimePower<ll>(i, 1, i));
T dp_i_minus_1 = res.F[i - 1];
for (int j = 1; j <= f_pq.l; j++)
{
dump(i, j, f_pq.n / j, res.getqF(j));
// dp(⌊n/j⌋)
if (f_pq.n / j < i * i)
break;
res.getqF(j) -= fi * (res.getqF(i * j) - dp_i_minus_1);
}
for (int v = f_pq.pre.k; v >= 1; v--)
{
// dp(v)
if (v < i * i)
break;
res.F[v] -= fi * (res.F[v / i] - dp_i_minus_1);
}
}
for (int i = 2; i <= f_pq.pre.k; i++)
{
if (!LinearSieve::is_prime(i))
res.pre.f[i] = 0;
}
return res;
}
void init() {}
void main2()
{
/* segmented sieve https://atcoder.jp/contests/abc227/tasks/abc227_g
LL(N, K);
SegmentedSieve ssv(N - K + 1, N);
vl cnt(max(K, (ll)sqrtl(N)) + 1, 0);
mint ans = 1;
rep(x, 1, K + 1)
{
auto facs = ssv.factorize(x);
dump(x, facs);
for (cauto &fac : facs)
cnt.at(fac.p) -= fac.e;
}
rep(x, N - K + 1, N + 1)
{
auto facs = ssv.factorize(x);
dump(x, facs);
for (cauto &fac : facs)
{
if (fac.p < (int)cnt.size())
cnt.at(fac.p) += fac.e;
else
ans *= 2;
}
}
rep(x, cnt.size()) ans *= 1 + cnt.at(x);
PRINT(ans);
//*/
/* gcd convolution https://judge.yosupo.jp/problem/gcd_convolution
INT(N);
VEC(mint, N, A, B);
A.insert(A.begin(), 0), B.insert(B.begin(), 0);
auto C = gcd_convolution(A, B);
C.erase(C.begin());
PRINTVEC(C);
//*/
/* lcm convolution https://judge.yosupo.jp/problem/lcm_convolution
INT(N);
VEC(mint, N, A, B);
A.insert(A.begin(), 0), B.insert(B.begin(), 0);
auto C = lcm_convolution(A, B);
C.erase(C.begin());
PRINTVEC(C);
//*/
/* enumerate multiplicative
LL(N);
dump(enumerate_completely_multiplicative<mint>(N, e_primepower<mint>) | cp::index());
dump(enumerate_completely_multiplicative<mint>(N, zeta_primepower<mint>) | cp::index());
dump(enumerate_completely_multiplicative<mint>(N, id_primepower<mint>) | cp::index());
dump(enumerate_completely_multiplicative<static_modint<10000>>(N, pow_primepower<static_modint<10000>>(3)) | cp::index());
dump(enumerate_completely_multiplicative<static_modint<10000>>(N, pow_inv_primepower<static_modint<10000>>(3)) | cp::index());
dump(enumerate_multiplicative<mint>(N, mobius_primepower<mint>) | cp::index());
dump(enumerate_multiplicative<mint>(N, divisor_count_primepower<mint>) | cp::index());
dump(enumerate_multiplicative<mint>(N, divisor_sum_primepower<mint>) | cp::index());
dump(enumerate_multiplicative<mint>(N, divisor_k_primepower<mint>(2)) | cp::index());
dump(enumerate_multiplicative<mint>(N, totient_primepower<mint>) | cp::index());
//*/
/* dirichletP
// declared as multiplicative
DirichletP<mint> mobius_p(100, mobius_primepower<mint>);
DirichletP<mint> totient_p(100, totient_primepower<mint>);
DirichletP<mint> zeta_p(100, zeta_primepower<mint>);
DirichletP<mint> id_p(100, id_primepower<mint>);
// declared as non-multiplicative
DirichletP<mint> mobius_p_nm(mobius_p.f);
DirichletP<mint> totient_p_nm(totient_p.f);
DirichletP<mint> zeta_p_nm(zeta_p.f);
DirichletP<mint> id_p_nm(id_p.f);
// totient * zeta = id
dump(id_p.f | cp::index());
for (cauto &T : {totient_p, totient_p_nm})
{
for (cauto &Z : {zeta_p, zeta_p_nm})
{
dump(T.f | cp::index(), Z.f | cp::index(), (T * Z).f | cp::index(), T.is_multiplicative, Z.is_multiplicative);
assert((T * Z).f == id_p.f);
}
}
for (cauto &T : {totient_p, totient_p_nm})
{
for (cauto &M : {mobius_p, mobius_p_nm})
{
dump(T.f | cp::index(), M.f | cp::index(), (T * M).f | cp::index(), T.is_multiplicative, M.is_multiplicative);
assert((T / M).f == id_p.f);
}
}
exit(0);
//*/
/* https://atcoder.jp/contests/abc172/tasks/abc172_d
// prodFn
// sum[ij <= N] ij
LL(N);
ll M = sqrtl(N);
DirichletPQ<ll> id(DirichletP<ll>(M, id_primepower<ll>), N, M, id_prefix_sum<ll>);
ll ans = prodFn(id, id);
PRINT(ans);
//*/
/* https://atcoder.jp/contests/arc116/tasks/arc116_c
// pow
// sum((zeta)^N)[M]
LL(N, M);
ll L = pow(M, 1.0 / 3.0), K = divceil(M, L);
DirichletPQ<mint> zeta(DirichletP<mint>(K, zeta_primepower<mint>), M, L, zeta_prefix_sum<mint>);
mint ans = zeta.pow(N).getqF(1);
PRINT(ans);
//*/
/* sum of totient https://judge.yosupo.jp/problem/sum_of_totient_function
// zeta * phi = id
LL(N);
ll L = pow(N, 1.0 / 3.0), K = divceil(N, L);
DirichletPQ<mint> zeta(DirichletP<mint>(K, zeta_primepower<mint>), N, L, zeta_prefix_sum<mint>);
DirichletPQ<mint> id(DirichletP<mint>(K, id_primepower<mint>), N, L, id_prefix_sum<mint>);
DirichletPQ<mint> phi = id / zeta;
PRINT(phi.getqF(1));
//*/
/* counting square-frees https://judge.yosupo.jp/problem/counting_squarefrees
// ζ(s)/ζ(2s) sum[ij <= N, j ] μ(√j)
// = sum[k^2 <= N] μ(k) ⌊N/k^2⌋
// = sum[x: ∃k, x = ⌊N/k^2⌋] x( M(⌊√(N/x)⌋) - M(⌊√(N/(x+1))⌋) )
LL(N);
ll L = 3 * pow(N, 1.0 / 5.0), K = max(L, (ll)sqrtl(divceil(N, L)));
dump(N, K, L);
DirichletPQ<ll, 2> zeta(DirichletP<ll>(K, zeta_primepower<ll>), N, L, zeta_prefix_sum<ll>);
auto mobius = zeta.inv();
ll ans = 0;
for (ll k = 1; k * k <= N;)
{
ll x = N / (k * k);
dump(k, x);
ans += x * (mobius.getqF(x) - (x == N ? 0 : mobius.getqF(x + 1)));
k = sqrtl(N / x) + 1;
}
PRINT(ans);
//*/
/* counting primes https://judge.yosupo.jp/problem/counting_primes
LL(N);
ll M = sqrtl(N);
DirichletPQ<ll> zeta(DirichletP<ll>(M, zeta_primepower<ll>), N, M, zeta_prefix_sum<ll>);
auto zeta_prime = lucy_dp(zeta, zeta_primepower<ll>);
PRINT(zeta_prime.getqF(1));
//*/
//* sum of primes https://yukicoder.me/problems/no/713
LL(N);
ll M = sqrtl(N);
DirichletPQ<ll> id(DirichletP<ll>(M, id_primepower<ll>), N, M, id_prefix_sum<ll>);
auto id_prime = lucy_dp(id, id_primepower<ll>);
PRINT(id_prime.getqF(1));
//*/
}
void test()
{
/*
#ifdef LOCAL
rep(t, 100000)
{
dump(t);
// ----- generate cases -----
ll N = 1 + rand() % 5;
ll K = -10 + rand() % 21;
vl A(N);
rep(i, N) A.at(i) = -10 + rand() % 21;
// --------------------------
// ------ check output ------
auto god = naive(K, A);
auto ans = solve(K, A);
if (god != ans)
{
dump(N, K, A);
dump(god, ans);
exit(0);
}
// --------------------------
}
dump("ok");
#endif
//*/
}
int main()
{
cauto CERR = [](cauto &val)
{
#ifndef BOJ
cerr << val;
#endif
};
#if defined FAST_IO and not defined LOCAL
CERR("[FAST_IO]\n\n");
cin.tie(0);
ios::sync_with_stdio(false);
#endif
cout << fixed << setprecision(20);
test();
init();
#if defined AOJ_TESTCASE or (defined LOCAL and defined SINGLE_TESTCASE)
CERR("[AOJ_TESTCASE]\n\n");
while (true) main2();
#elif defined SINGLE_TESTCASE
CERR("[SINGLE_TESTCASE]\n\n");
main2();
#elif defined MULTI_TESTCASE
CERR("[MULTI_TESTCASE]\n\n");
int T;
cin >> T;
while (T--) main2();
#endif
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0