結果
| 問題 |
No.2902 ZERO!!
|
| コンテスト | |
| ユーザー |
Today03
|
| 提出日時 | 2024-09-27 21:57:17 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 341 ms / 2,000 ms |
| コード長 | 5,094 bytes |
| コンパイル時間 | 3,812 ms |
| コンパイル使用メモリ | 265,864 KB |
| 実行使用メモリ | 128,948 KB |
| 最終ジャッジ日時 | 2024-09-27 21:57:32 |
| 合計ジャッジ時間 | 9,229 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 41 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int INF = 1e9 + 10;
const ll INFL = 4e18;
/*
考察
b=N!のとき、e_b=1
b=(N!-1)のとき、e_b=0かな?
N!の素因数分解ができるのか
だから、e_bが1になるのはいくつ、e_bが2になるのはいくつ。。。みたいにやることを考える。
e_b=1以上となるのは、全ての素因数について指数/1以下
e_b=2以上となるのは、全ての素因数について指数/2以下
e_b=i以上となるのは、全ての素因数について指数/i以下
*/
template <ll MOD>
struct ModInt {
ll value;
ModInt(ll x = 0) {
if (x >= 0) {
value = x % MOD;
} else {
value = MOD - (-x) % MOD;
}
}
ModInt operator-() const { return ModInt(-value); }
ModInt operator+() const { return ModInt(*this); }
ModInt &operator+=(const ModInt &other) {
value += other.value;
if (value >= MOD) value -= MOD;
return *this;
}
ModInt &operator-=(const ModInt &other) {
value += MOD - other.value;
if (value >= MOD) value -= MOD;
return *this;
}
ModInt &operator*=(const ModInt other) {
value = value * other.value % MOD;
return *this;
}
ModInt &operator/=(ModInt other) {
(*this) *= other.inv();
return *this;
}
ModInt operator+(const ModInt &other) const { return ModInt(*this) += other; }
ModInt operator-(const ModInt &other) const { return ModInt(*this) -= other; }
ModInt operator*(const ModInt &other) const { return ModInt(*this) *= other; }
ModInt operator/(const ModInt &other) const { return ModInt(*this) /= other; }
ModInt pow(ll x) const {
ModInt ret(1), mul(value);
while (x) {
if (x & 1) ret *= mul;
mul *= mul;
x >>= 1;
}
return ret;
}
ModInt inv() const { return pow(MOD - 2); }
bool operator==(const ModInt &other) const { return value == other.value; }
bool operator!=(const ModInt &other) const { return value != other.value; }
friend ostream &operator<<(ostream &os, const ModInt &x) { return os << x.value; }
friend istream &operator>>(istream &is, ModInt &x) {
ll v;
is >> v;
x = ModInt<MOD>(v);
return is;
}
static constexpr ll get_mod() { return MOD; }
};
using Mod998 = ModInt<998244353>;
using Mod107 = ModInt<1000000007>;
using mint = Mod998;
struct Factors {
Factors(int n) {
mx = n;
min_factor = vector<int>(mx + 1);
is_prime = vector<bool>(mx + 1, true);
is_prime[0] = is_prime[1] = false;
divisors = vector<vector<int>>(mx + 1);
prime_factors = vector<vector<pair<int, int>>>(mx + 1);
for (int i = 2; i <= mx; i++) {
if (is_prime[i]) {
min_factor[i] = i;
for (int j = 2 * i; j <= mx; j += i) {
is_prime[j] = false;
if (min_factor[j] == 0) {
min_factor[j] = i;
}
}
}
}
}
vector<pair<int, int>> get_prime_factors(int n) {
if (prime_factors[n].size() == 0) {
int x = n;
while (x > 1) {
int p = min_factor[x];
int cnt = 0;
while (x % p == 0) {
x /= p;
cnt++;
}
prime_factors[n].push_back({p, cnt});
}
}
return prime_factors[n];
}
vector<int> get_divisors(int n) {
if (divisors[n].size() == 0) {
vector<pair<int, int>> pf = get_prime_factors(n);
int sz = pf.size();
auto dfs = [&](auto &&dfs, int i, int x) -> void {
if (i == sz) {
divisors[n].push_back(x);
return;
}
auto [p, cnt] = pf[i];
for (int j = 0; j <= cnt; j++) {
dfs(dfs, i + 1, x);
x *= p;
}
};
dfs(dfs, 0, 1);
sort(divisors[n].begin(), divisors[n].end());
}
return divisors[n];
}
private:
int mx;
vector<int> min_factor;
vector<bool> is_prime;
vector<vector<int>> divisors;
vector<vector<pair<int, int>>> prime_factors;
};
int main() {
int N;
cin >> N;
Factors fac(N);
vector<int> cnt(N + 1);
int all = 0;
for (int i = 2; i <= N; i++) {
auto pf = fac.get_prime_factors(i);
for (auto [p, e] : pf) {
cnt[p] += e;
all += e;
}
}
int mx = ranges::max(cnt);
vector<mint> prod(all + 1, 1);
for (int i = 2; i <= N; i++) {
if (cnt[i] == 0) continue;
for (int j = 1; j <= cnt[i]; j++) {
prod[j] *= (cnt[i] / j + 1);
}
}
mint ans = 0;
for (int i = 1; i <= mx; i++) ans += prod[i] - 1;
cout << ans << endl;
}
Today03