結果

問題 No.2917 二重木
ユーザー PNJPNJ
提出日時 2024-10-04 22:29:51
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 10,554 bytes
コンパイル時間 259 ms
コンパイル使用メモリ 82,224 KB
実行使用メモリ 94,300 KB
最終ジャッジ日時 2024-10-04 22:30:25
合計ジャッジ時間 29,056 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 39 ms
56,008 KB
testcase_01 AC 40 ms
56,916 KB
testcase_02 AC 41 ms
56,596 KB
testcase_03 AC 39 ms
55,732 KB
testcase_04 AC 39 ms
57,036 KB
testcase_05 AC 38 ms
56,960 KB
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 AC 46 ms
64,952 KB
testcase_13 AC 49 ms
66,536 KB
testcase_14 WA -
testcase_15 AC 38 ms
56,960 KB
testcase_16 AC 38 ms
56,772 KB
testcase_17 AC 37 ms
55,784 KB
testcase_18 AC 35 ms
56,616 KB
testcase_19 AC 44 ms
56,716 KB
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 AC 40 ms
55,428 KB
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 AC 37 ms
55,468 KB
testcase_28 WA -
testcase_29 TLE -
testcase_30 TLE -
testcase_31 TLE -
testcase_32 TLE -
testcase_33 TLE -
testcase_34 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

N,P = map(int,input().split())
if N == P:
print(pow(N,N - 2,P))
exit()
mod = 998244353
Mod,MOd,MOD = 1045430273,1051721729,1053818881
n = N
fact = [1 for i in range(n+1)]
for i in range(1,n+1):
fact[i] = fact[i-1] * i % P
fact_inv = [1 for i in range(n+1)]
fact_inv[-1] = pow(fact[-1],P-2,P)
for i in range(n,0,-1):
fact_inv[i-1] = fact_inv[i]*i % P
def binom(n,r):
res = fact[n] * (fact_inv[n - r] * fact_inv[r] % P) % P
return res
NTT_friend = [120586241,167772161,469762049,754974721,880803841,924844033,943718401,998244353,1045430273,1051721729,1053818881]
NTT_dict = {}
for i in range(len(NTT_friend)):
NTT_dict[NTT_friend[i]] = i
NTT_info = [[20,74066978],[25,17],[26,30],[24,362],[23,211],[21,44009197],[22,663003469],[23,31],[20,363],[20,330],[20,2789]]
def popcount(n):
c=(n&0x5555555555555555)+((n>>1)&0x5555555555555555)
c=(c&0x3333333333333333)+((c>>2)&0x3333333333333333)
c=(c&0x0f0f0f0f0f0f0f0f)+((c>>4)&0x0f0f0f0f0f0f0f0f)
c=(c&0x00ff00ff00ff00ff)+((c>>8)&0x00ff00ff00ff00ff)
c=(c&0x0000ffff0000ffff)+((c>>16)&0x0000ffff0000ffff)
c=(c&0x00000000ffffffff)+((c>>32)&0x00000000ffffffff)
return c
def topbit(n):
h = n.bit_length()
h -= 1
return h
def prepared_fft(mod = 998244353):
rank2 = NTT_info[NTT_dict[mod]][0]
root,iroot = [0] * 30,[0] * 30
rate2,irate2= [0] * 30,[0] * 30
rate3,irate3= [0] * 30,[0] * 30
root[rank2] = NTT_info[NTT_dict[mod]][1]
iroot[rank2] = pow(root[rank2],mod - 2,mod)
for i in range(rank2-1,-1,-1):
root[i] = root[i+1] * root[i+1] % mod
iroot[i] = iroot[i+1] * iroot[i+1] % mod
prod,iprod = 1,1
for i in range(rank2-1):
rate2[i] = root[i + 2] * prod % mod
irate2[i] = iroot[i + 2] * iprod % mod
prod = prod * iroot[i + 2] % mod
iprod = iprod * root[i + 2] % mod
prod,iprod = 1,1
for i in range(rank2-2):
rate3[i] = root[i + 3] * prod % mod
irate3[i] = iroot[i + 3] * iprod % mod
prod = prod * iroot[i + 3] % mod
iprod = iprod * root[i + 3] % mod
return root,iroot,rate2,irate2,rate3,irate3
root,iroot,rate2,irate2,rate3,irate3 = prepared_fft()
def ntt(a):
n = len(a)
h = topbit(n)
assert (n == 1 << h)
le = 0
while le < h:
if h - le == 1:
p = 1 << (h - le - 1)
rot = 1
for s in range(1 << le):
offset = s << (h - le)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p] * rot % mod
a[i + offset] = (l + r) % mod
a[i + offset + p] = (l - r) % mod
rot = rot * rate2[topbit(~s & -~s)] % mod
le += 1
else:
p = 1 << (h - le - 2)
rot,imag = 1,root[2]
for s in range(1 << le):
rot2 = rot * rot % mod
rot3 = rot2 * rot % mod
offset = s << (h - le)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p] * rot
a2 = a[i + offset + p * 2] * rot2
a3 = a[i + offset + p * 3] * rot3
a1na3imag = (a1 - a3) % mod * imag
a[i + offset] = (a0 + a2 + a1 + a3) % mod
a[i + offset + p] = (a0 + a2 - a1 - a3) % mod
a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % mod
a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % mod
rot = rot * rate3[topbit(~s & -~s)] % mod
le += 2
def intt(a):
n = len(a)
h = topbit(n)
assert (n == 1 << h)
coef = pow(n,mod - 2,mod)
for i in range(n):
a[i] = a[i] * coef % mod
le = h
while le:
if le == 1:
p = 1 << (h - le)
irot = 1
for s in range(1 << (le - 1)):
offset = s << (h - le + 1)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p]
a[i + offset] = (l + r) % mod
a[i + offset + p] = (l - r) * irot % mod
irot = irot * irate2[topbit(~s & -~s)] % mod
le -= 1
else:
p = 1 << (h - le)
irot,iimag = 1,iroot[2]
for s in range(1 << (le - 2)):
irot2 = irot * irot % mod
irot3 = irot2 * irot % mod
offset = s << (h - le + 2)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p]
a2 = a[i + offset + p * 2]
a3 = a[i + offset + p * 3]
a2na3iimag = (a2 - a3) * iimag % mod
a[i + offset] = (a0 + a1 + a2 + a3) % mod
a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % mod
a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % mod
a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % mod
irot *= irate3[topbit(~s & -~s)]
irot %= mod
le -= 2
def convolute_naive(a,b):
res = [0] * (len(a) + len(b) - 1)
for i in range(len(a)):
for j in range(len(b)):
res[i+j] = (res[i+j] + a[i] * b[j] % mod) % mod
return res
def convolute(a,b):
s = a[:]
t = b[:]
n = len(s)
m = len(t)
if min(n,m) <= 60:
return convolute_naive(s,t)
le = 1
while le < n + m - 1:
le *= 2
s += [0] * (le - n)
t += [0] * (le - m)
ntt(s)
ntt(t)
for i in range(le):
s[i] = s[i] * t[i] % mod
intt(s)
s = s[:n + m - 1]
return s
def fps_inv(f,deg = -1):
assert (f[0] != 0)
if deg == -1:
deg = len(f)
res = [0] * deg
res[0] = pow(f[0],mod-2,mod)
d = 1
while d < deg:
a = [0] * (d << 1)
tmp = min(len(f),d << 1)
a[:tmp] = f[:tmp]
b = [0] * (d << 1)
b[:d] = res[:d]
ntt(a)
ntt(b)
for i in range(d << 1):
a[i] = a[i] * b[i] % mod
intt(a)
a[:d] = [0] * d
ntt(a)
for i in range(d << 1):
a[i] = a[i] * b[i] % mod
intt(a)
for j in range(d,min(d << 1,deg)):
if a[j]:
res[j] = mod - a[j]
else:
res[j] = 0
d <<= 1
return res
def fps_div(f,g):
n,m = len(f),len(g)
if n < m:
return [],f
rev_f = f[:]
rev_f = rev_f[::-1]
rev_g = g[:]
rev_g = rev_g[::-1]
rev_q = convolute(rev_f,fps_inv(rev_g,n-m+1))[:n-m+1]
q = rev_q[:]
q = q[::-1]
p = convolute(g,q)
r = f[:]
for i in range(min(len(p),len(r))):
r[i] -= p[i]
r[i] %= mod
while len(r):
if r[-1] != 0:
break
r.pop()
return q,r
def fps_add(f,g):
n = max(len(f),len(g))
res = [0] * n
for i in range(len(f)):
res[i] = f[i]
for i in range(len(g)):
res[i] = (res[i] + g[i]) % mod
return res
def fps_diff(f):
if len(f) <= 1:
return [0]
res = []
for i in range(1,len(f)):
res.append(i * f[i] % mod)
return res
def fps_integrate(f):
n = len(f)
res = [0] * (n + 1)
for i in range(n):
res[i+1] = pow(i + 1,mod-2,mod) * f[i] % mod
return res
def fps_log(f,deg = -1):
assert (f[0] == 1)
if deg == -1:
deg = len(f)
res = convolute(fps_diff(f),fps_inv(f,deg))
res = fps_integrate(res)
return res[:deg]
def fps_exp(f,deg = -1):
assert (f[0] == 0)
if deg == -1:
deg = len(f)
res = [1,0]
if len(f) > 1:
res[1] = f[1]
g = [1]
p = []
q = [1,1]
m = 2
while m < deg:
y = res + [0]*m
ntt(y)
p = q[:]
z = [y[i] * p[i] for i in range(len(p))]
intt(z)
z[:m >> 1] = [0] * (m >> 1)
ntt(z)
for i in range(len(p)):
z[i] = z[i] * (-p[i]) % mod
intt(z)
g[m >> 1:] = z[m >> 1:]
q = g + [0] * m
ntt(q)
tmp = min(len(f),m)
x = f[:tmp] + [0] * (m - tmp)
x = fps_diff(x)
x.append(0)
ntt(x)
for i in range(len(x)):
x[i] = x[i] * y[i] % mod
intt(x)
for i in range(len(res)):
if i == 0:
continue
x[i-1] -= res[i] * i % mod
x += [0] * m
for i in range(m-1):
x[m+i],x[i] = x[i],0
ntt(x)
for i in range(len(q)):
x[i] = x[i] * q[i] % mod
intt(x)
x.pop()
x = fps_integrate(x)
x[:m] = [0] * m
for i in range(m,min(len(f),m << 1)):
x[i] += f[i]
ntt(x)
for i in range(len(y)):
x[i] = x[i] * y[i] % mod
intt(x)
res[m:] = x[m:]
m <<= 1
return res[:deg]
def fps_pow(f,k,deg = -1):
if deg == -1:
deg = len(f)
if k == 0:
return [1] + [0] * (deg - 1)
while len(f) < deg:
f.append(0)
p = 0
while p < deg:
if f[p]:
break
p += 1
if p * k >= deg:
return [0] * deg
a = f[p]
g = [0 for _ in range(deg - p)]
a_inv = pow(a,mod-2,mod)
for i in range(deg - p):
g[i] = f[i + p] * a_inv % mod
g = fps_log(g)
for i in range(deg-p):
g[i] = g[i] * k % mod
g = fps_exp(g)
a = pow(a,k,mod)
res = [0] * deg
for i in range(deg):
j = i + p * k
if j >= deg:
break
res[j] = g[i] * a % mod
return res
def mod_inv(a,mod):
if mod == 1:
return 0
a %= mod
b,s,t = mod,1,0
while True:
if a == 1:
return s
t -= (b // a) * s
b %= a
if b == 1:
return t + mod
s -= (a // b) * t
a %= b
def gcd_inv(a,mod):
a %= mod
b,s,t = mod,1,0
while True:
if a == 0:
return (b,t + mod)
t -= (b // a) * s
b %= a
if b == 0:
return (a,s)
s -= (a // b) * t
a %= b
# (0,0).
def garner(Rem,Mod):
assert (len(Rem) == len(Mod))
r,m = 0,1
for i in range(len(Rem)):
assert (Mod[i])
Rem[i] %= Mod[i]
m1,r1 = Mod[i],Rem[i]
if m < m1:
m,m1,r,r1 = m1,m,r1,r
if m % m1 == 0:
if r % m1 != r1:
return (0,0)
g,im = gcd_inv(m,m1)
y = abs(r1 - r)
if y % g:
return (0,0)
u1 = m1 // g
y = y // g % u1
if (r > r1 and y != 0):
y = u1 - y
x = y * im % u1
r += x * m
m *= u1
return (r,m)
# Mod
def Garner(Rem,Mod,mod):
assert (len(Rem) == len(Mod))
Rem.append(0)
Mod.append(mod)
n = len(Mod)
coffs = [1] * n
constants = [0] * n
for i in range(n - 1):
v = (Rem[i] - constants[i]) * mod_inv(coffs[i],Mod[i]) % Mod[i]
for j in range(i + 1,n):
constants[j] = (constants[j] + coffs[j] * v) % Mod[j]
coffs[j] = (coffs[j] * Mod[i]) % Mod[j]
return constants[-1]
f = [1]
for i in range(1,N):
c = pow(i + 1,i - 1,P) * fact_inv[i] % P
f.append(c)
ans = 0
g = [0] * N
g[0] = 1
for n in range(1,N + 1):
res = binom(N,n) * pow(n,n - 2,P) % P
root,iroot,rate2,irate2,rate3,irate3 = prepared_fft(mod)
h = convolute(f,g)[:N]
root,iroot,rate2,irate2,rate3,irate3 = prepared_fft(Mod)
hh = convolute(f,g)[:N]
root,iroot,rate2,irate2,rate3,irate3 = prepared_fft(MOd)
hhh = convolute(f,g)[:N]
root,iroot,rate2,irate2,rate3,irate3 = prepared_fft(MOD)
hhhh = convolute(f,g)[:N]
for i in range(N):
g[i] = Garner([h[i],hh[i],hhh[i],hhhh[i]],[mod,Mod,MOd,MOD],P)
res = res * fact[N - n] % P
res = res * g[N - n] % P
ans += res
ans %= P
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0